The effect of cell cycle and expression of cyclin B1 and cyclin C protein in hepatocellular carcinoma cell line HepG2 and SMMC-7721 after of silencing β-catenin gene

Hepatogastroenterology. 2012 Mar-Apr;59(114):515-8. doi: 10.5754/hge11534.

Abstract

Background/aims: Abnormalities in cell cycle regulation are reported to be strongly associated with tumorigenesis and progression of tumors. Wnt/β-catenin signaling pathway and cell cycle play key roles during the genesis and development of hepatocellular carcinoma (HCC). Current studies indicated that expressions of cyclin A, E and D1 were affected after silencing of β-catenin gene in HCC, but it is unclear if other cyclins are affected.

Methodology: To determine the relation, small interference RNA (siRNA) against β-catenin was transfected into HCC cell lines HepG2 and SMMC-7721, and cell cycle and cyclin B1 and cyclin C protein expression were detected.

Results: Cell cycle was arrested in G0/G1 at 72h after transfection and the cell cycle began to transfer from G0/G1 to G2/M through S and had a trend to revert at 96h. In addition, β-catenin protein expression was decreased at both 72 and 96h, although the level was slightly higher at 96h than that at 72h. However, cyclin B1 expression decreased at 72h and increased at 96h, cyclin C expression increased at 72h and decreased at 96h.

Conclusions: These findings suggest that silencing β-catenin gene may induce the changes of cell cycle and cyclin B1 and cyclin C protein expression. Wnt/β-catenin signaling pathway probably takes part in the genesis and development of HCC through regulating cell cycle and the expression of cyclin B1 and cyclin C.

MeSH terms

  • Carcinoma, Hepatocellular / genetics
  • Carcinoma, Hepatocellular / metabolism*
  • Carcinoma, Hepatocellular / pathology
  • Cell Cycle*
  • Cyclin B1 / genetics
  • Cyclin B1 / metabolism*
  • Cyclin C / genetics
  • Cyclin C / metabolism*
  • Flow Cytometry
  • Gene Expression Regulation, Neoplastic
  • Hep G2 Cells
  • Humans
  • Liver Neoplasms / genetics
  • Liver Neoplasms / metabolism*
  • Liver Neoplasms / pathology
  • RNA Interference*
  • Time Factors
  • Transfection
  • Wnt Signaling Pathway
  • beta Catenin / genetics
  • beta Catenin / metabolism*

Substances

  • CCNB1 protein, human
  • CCNC protein, human
  • CTNNB1 protein, human
  • Cyclin B1
  • Cyclin C
  • beta Catenin