Genetic polymorphisms in metabolic and cellular transport pathway of methotrexate impact clinical outcome of methotrexate monotherapy in Japanese patients with rheumatoid arthritis

Drug Metab Pharmacokinet. 2012;27(2):192-9. doi: 10.2133/dmpk.dmpk-11-rg-066. Epub 2011 Nov 22.

Abstract

The aim of this study was to investigate the impact of genetic polymorphisms in the metabolic and cellular transport pathway of methotrexate (MTX) on the clinical outcome of MTX monotherapy in Japanese rheumatoid arthritis (RA) patients. Fifty-five patients were treated with MTX monotherapy at a dose of 4-10 mg/week. The total concentration of MTX-polyglutamates (MTX-PGs) was measured at steady-state in red blood cells (RBCs) by high performance liquid chromatography. The genotype at 16 polymorphic sites in 11 genes (ABCB1, ABCG2, ABCC2, RFC1, PCFT, SLCO1B1, MTHFR, GGH, ATIC, MTR, and MTRR) was analyzed. No significant association between the total concentration of MTX-PGs in RBCs and clinical outcome was found. However, patients with the ABCB1 3435TT genotype had a significantly lower mean disease activity score (DAS) 28 than did patients with the ABCB1 3435CC genotype (p = 0.02). Similarly, patients with the ABCB1 2677AA/AT/TT genotypes had a significantly lower mean DAS28 than did patients with the ABCB1 2677GG/GA/GT genotypes (p = 0.04). The patients with the MTHFR 1298AA genotype had a significantly lower mean DAS28 than those with the MTHFR 1298AC/CC genotypes (p = 0.04). In conclusion, the ABCB1 3435C>T, ABCB1 2677G>A/T, and MTHFR 1298A>C polymorphisms influenced the efficacy of MTX monotherapy.

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / genetics*
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / metabolism
  • Adult
  • Aged
  • Aged, 80 and over
  • Arthritis, Rheumatoid / drug therapy
  • Arthritis, Rheumatoid / genetics*
  • Arthritis, Rheumatoid / metabolism
  • Asian People / genetics*
  • Biological Transport, Active / genetics
  • Female
  • Humans
  • Male
  • Methotrexate / metabolism
  • Methotrexate / therapeutic use*
  • Methylenetetrahydrofolate Reductase (NADPH2) / genetics*
  • Methylenetetrahydrofolate Reductase (NADPH2) / metabolism
  • Middle Aged
  • Multidrug Resistance-Associated Protein 2
  • Polymorphism, Genetic / genetics*
  • Retrospective Studies
  • Treatment Outcome

Substances

  • ABCB1 protein, human
  • ABCC2 protein, human
  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • Multidrug Resistance-Associated Protein 2
  • MTHFR protein, human
  • Methylenetetrahydrofolate Reductase (NADPH2)
  • Methotrexate