Background: Activation of somatostatin receptors (sstr1-5) by somatostatin and its analogues exerts an inhibitory effect on hormone secretion and provides the basis for the treatment of a range of endocrine diseases such as acromegaly, Cushing's disease and neuroendocrine tumors (NET). The lack of well-characterized commercially available sstr subtype-specific antibodies prevents routine identification of the sstr expression profile in patients.
Methods: We generated and characterized new mouse monoclonal antibodies (mAbs) targeting the five human sstr subtypes using ELISA and immunohistochemistry, and tested their suitability in formalin-fixed and paraffin-embedded (FFPE) human tissues and archival samples of normal pancreatic tissue and NET.
Results: All mAbs were highly specific with no cross-reactivity. The sstr1-5 immunoreactivity in gastrointestinal NET (n=67) was correlated with clinicopathologic data. With the exception of sstr3, NET were highly positive for all receptor subtypes (42, 63, 6, 32 and 65% of tumors were positive for sstr1, sstr2a, sstr3, sstr4 and sstr5, respectively). sstr1, sstr2a and sstr5 were present at the plasma membrane and in the cytoplasm of tumor cells, whereas sstr3 and sstr4 were almost exclusively cytoplasmic. Immunoreactivity of sstr1, sstr2a and sstr4 tended to decrease as tumor aggressiveness increased. sstr5 showed an opposite pattern, with higher staining in well-differentiated carcinomas compared with well-differentiated tumors. sstr5 immunoreactivity was correlated with the presence of metastases and angioinvasion, suggesting a possible association with more aggressive behavior.
Conclusion: Determination of the sstr1-5 by immunohistochemistry using subtype-specific mAbs is feasible in FFPE tissue and may provide a tool for routine clinical practice.
Copyright © 2011 S. Karger AG, Basel.