STAP-2 interacts with and modulates BCR-ABL-mediated tumorigenesis

Oncogene. 2012 Oct 4;31(40):4384-96. doi: 10.1038/onc.2011.604. Epub 2012 Jan 9.

Abstract

In chronic myeloid leukemia (CML), the BCR-ABL fusion oncoprotein activates multiple pathways involved in cell survival, growth promotion and disease progression. In this report, we show that the signal-transducing adaptor protein-2 (STAP-2) is involved in BCR-ABL activity. We demonstrate that STAP-2 bound to BCR-ABL, and BCR and ABL proteins, depending on the STAP-2 Src homology 2-like domain. BCR-ABL phosphorylates STAP-2 Tyr250 and the phosphorylated STAP-2 in turn upregulated BCR-ABL phosphorylation, leading to enhanced activation of downstream signaling molecules including ERK (extracellular-signal-regulated kinase), STAT5 (signal transducer and activator of transcription 5), BCL-xL (B-cell lymphoma-extra large) and BCL-2(B-cell lymphoma 2). In addition, STAP-2 interacts with BCR-ABL to alter chemokine receptor expression leading to downregulation of CXCR4 and upregulation of CCR7. The interaction between STAP-2 and BCR-ABL plays a crucial role in conferring a growth advantage and resistance to imatinib, a BCR-ABL inhibitor, as well as tumor progression. Notably, mice injected with BCR-ABL/STAP-2-expressing Ba/F3 cells developed lymph node enlargement and hepatosplenomegaly. Moreover, suppression of STAP-2 in K562 CML cells resulted in no tumor formation in mice. Our results demonstrate a critical contribution of STAP-2 in BCR-ABL activity, and suggest that STAP-2 might be an important candidate for drug development for patients with CML. Furthermore, the expression of STAP-2 provides useful information for estimating the characteristics of individual CML clones.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism*
  • Animals
  • Cell Line, Tumor
  • Cell Transformation, Neoplastic / genetics
  • Extracellular Signal-Regulated MAP Kinases / metabolism
  • Fusion Proteins, bcr-abl / genetics
  • Fusion Proteins, bcr-abl / metabolism*
  • Humans
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / genetics
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / metabolism*
  • Mice
  • Phosphoproteins / genetics
  • Phosphoproteins / metabolism*
  • Phosphorylation
  • Protein Binding
  • Receptors, Chemokine / metabolism

Substances

  • Adaptor Proteins, Signal Transducing
  • Phosphoproteins
  • Receptors, Chemokine
  • STAP2 protein, human
  • Fusion Proteins, bcr-abl
  • Extracellular Signal-Regulated MAP Kinases