MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma

Carcinogenesis. 2012 May;33(5):1113-20. doi: 10.1093/carcin/bgs113. Epub 2012 Feb 23.

Abstract

The deregulation of microRNA (miRNA) is frequently associated with a variety of cancers, including hepatocellular carcinoma (HCC). In this study, we identified 10 upregulated miRNAs (miR-217, miR-518b, miR-517c, miR-520g, miR-519a, miR-522, miR-518e, miR-525-3p, miR-512-3p and miR-518a-3p) and 10 downregulated miRNAs (miR-138, miR-214, miR-214#, miR-27a#, miR-199a-5p, miR-433, miR-511, miR-592, miR-483-5p and miR-483-3p) by Taqman miRNAs array and quantitative real-time PCR (qRT-PCR) confirmation. Additionally, we investigated the expression and possible role of miR-138 in HCC. qRT-PCR results showed that miR-138 was downregulated in 77.8%(14/18) of HCC tissues compared with adjacent non-tumor tissues. Overexpression of miR-138 reduced cell viability and colony formation by induction of cell arrest in HCC cell lines and inhibited tumor cell growth in xenograft nude mice. The use of miR-138 inhibitor increased cell viability and colony formation in HCC cell lines and tumor cell growth in xenograft nude mice. Using TargetScan predictions, CCND3 was defined as a potential direct target of miR-138. Furthermore, CCND3 protein expression was observed to be negatively correlated with miR-138 expression in HCC tissues. The dual-luciferase reporter gene assay results showed that CCND3 was a direct target of miR-138. The use of miR-138 mimic or inhibitor could decrease or increase CCND3 protein levels in HCC cell lines. We conclude that the frequently downregulated miR-138 can regulate CCND3 and function as a tumor suppressor in HCC. Therefore, miR-138 may serve as a useful therapeutic agent for miRNA-based HCC therapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Animals
  • Carcinoma, Hepatocellular / genetics
  • Carcinoma, Hepatocellular / metabolism
  • Carcinoma, Hepatocellular / pathology*
  • Cell Cycle Checkpoints / genetics*
  • Cell Line, Tumor
  • Cell Survival / genetics
  • Cyclin D3 / biosynthesis*
  • Cyclin D3 / genetics*
  • Cyclin D3 / metabolism
  • Female
  • HEK293 Cells
  • Hep G2 Cells
  • Humans
  • Liver Neoplasms / genetics
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / pathology*
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • MicroRNAs / biosynthesis*
  • MicroRNAs / genetics*
  • MicroRNAs / metabolism
  • Middle Aged
  • Neoplastic Stem Cells

Substances

  • CCND3 protein, human
  • Cyclin D3
  • MIRN138 microRNA, human
  • MicroRNAs