Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates cardiac sodium channel NaV1.5 gating by multiple phosphorylation sites

J Biol Chem. 2012 Jun 8;287(24):19856-69. doi: 10.1074/jbc.M111.322537. Epub 2012 Apr 18.

Abstract

The cardiac Na(+) channel Na(V)1.5 current (I(Na)) is critical to cardiac excitability, and altered I(Na) gating has been implicated in genetic and acquired arrhythmias. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is up-regulated in heart failure and has been shown to cause I(Na) gating changes that mimic those induced by a point mutation in humans that is associated with combined long QT and Brugada syndromes. We sought to identify the site(s) on Na(V)1.5 that mediate(s) the CaMKII-induced alterations in I(Na) gating. We analyzed both CaMKII binding and CaMKII-dependent phosphorylation of the intracellularly accessible regions of Na(V)1.5 using a series of GST fusion constructs, immobilized peptide arrays, and soluble peptides. A stable interaction between δ(C)-CaMKII and the intracellular loop between domains 1 and 2 of Na(V)1.5 was observed. This region was also phosphorylated by δ(C)-CaMKII, specifically at the Ser-516 and Thr-594 sites. Wild-type (WT) and phosphomutant hNa(V)1.5 were co-expressed with GFP-δ(C)-CaMKII in HEK293 cells, and I(Na) was recorded. As observed in myocytes, CaMKII shifted WT I(Na) availability to a more negative membrane potential and enhanced accumulation of I(Na) into an intermediate inactivated state, but these effects were abolished by mutating either of these sites to non-phosphorylatable Ala residues. Mutation of these sites to phosphomimetic Glu residues negatively shifted I(Na) availability without the need for CaMKII. CaMKII-dependent phosphorylation of Na(V)1.5 at multiple sites (including Thr-594 and Ser-516) appears to be required to evoke loss-of-function changes in gating that could contribute to acquired Brugada syndrome-like effects in heart failure.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brugada Syndrome / genetics
  • Brugada Syndrome / metabolism*
  • Brugada Syndrome / pathology
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2 / genetics
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2 / metabolism*
  • HEK293 Cells
  • Heart Failure / genetics
  • Heart Failure / metabolism*
  • Heart Failure / pathology
  • Humans
  • Ion Channel Gating / genetics
  • Long QT Syndrome / genetics
  • Long QT Syndrome / metabolism
  • Long QT Syndrome / pathology
  • Membrane Potentials / genetics
  • Mice
  • Muscle Proteins / genetics
  • Muscle Proteins / metabolism*
  • Myocardium / metabolism*
  • Myocardium / pathology
  • Myocytes, Cardiac / metabolism
  • Myocytes, Cardiac / pathology
  • NAV1.5 Voltage-Gated Sodium Channel
  • Phosphorylation / genetics
  • Protein Structure, Tertiary
  • Sodium Channels / genetics
  • Sodium Channels / metabolism*

Substances

  • Muscle Proteins
  • NAV1.5 Voltage-Gated Sodium Channel
  • SCN5A protein, human
  • Scn5a protein, mouse
  • Sodium Channels
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2