Sialic acid metabolism and sialyltransferases: natural functions and applications

Appl Microbiol Biotechnol. 2012 May;94(4):887-905. doi: 10.1007/s00253-012-4040-1. Epub 2012 Apr 13.

Abstract

Sialic acids are a family of negatively charged monosaccharides which are commonly presented as the terminal residues in glycans of the glycoconjugates on eukaryotic cell surface or as components of capsular polysaccharides or lipooligosaccharides of some pathogenic bacteria. Due to their important biological and pathological functions, the biosynthesis, activation, transfer, breaking down, and recycle of sialic acids are attracting increasing attention. The understanding of the sialic acid metabolism in eukaryotes and bacteria leads to the development of metabolic engineering approaches for elucidating the important functions of sialic acid in mammalian systems and for large-scale production of sialosides using engineered bacterial cells. As the key enzymes in biosynthesis of sialylated structures, sialyltransferases have been continuously identified from various sources and characterized. Protein crystal structures of seven sialyltransferases have been reported. Wild-type sialyltransferases and their mutants have been applied with or without other sialoside biosynthetic enzymes for producing complex sialic acid-containing oligosaccharides and glycoconjugates. This mini-review focuses on current understanding and applications of sialic acid metabolism and sialyltransferases.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Bacteria / metabolism
  • Eukaryota / metabolism
  • Metabolic Engineering / methods
  • Metabolic Networks and Pathways / genetics
  • Mutant Proteins / genetics
  • Mutant Proteins / metabolism
  • N-Acetylneuraminic Acid / metabolism*
  • Protein Conformation
  • Sialyltransferases / chemistry
  • Sialyltransferases / genetics
  • Sialyltransferases / metabolism*

Substances

  • Mutant Proteins
  • Sialyltransferases
  • N-Acetylneuraminic Acid