Evidence for premature aging due to oxidative stress in iPSCs from Cockayne syndrome

Hum Mol Genet. 2012 Sep 1;21(17):3825-34. doi: 10.1093/hmg/dds211. Epub 2012 Jun 1.

Abstract

Cockayne syndrome (CS) is a human premature aging disorder associated with neurological and developmental abnormalities, caused by mutations mainly in the CS group B gene (ERCC6). At the molecular level, CS is characterized by a deficiency in the transcription-couple DNA repair pathway. To understand the role of this molecular pathway in a pluripotent cell and the impact of CSB mutation during human cellular development, we generated induced pluripotent stem cells (iPSCs) from CSB skin fibroblasts (CSB-iPSC). Here, we showed that the lack of functional CSB does not represent a barrier to genetic reprogramming. However, iPSCs derived from CSB patient's fibroblasts exhibited elevated cell death rate and higher reactive oxygen species (ROS) production. Moreover, these cellular phenotypes were accompanied by an up-regulation of TXNIP and TP53 transcriptional expression. Our findings suggest that CSB modulates cell viability in pluripotent stem cells, regulating the expression of TP53 and TXNIP and ROS production.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging, Premature / pathology*
  • Cell Death / genetics
  • Cell Hypoxia / genetics
  • Cell Survival / genetics
  • Clone Cells
  • Cockayne Syndrome / genetics
  • Cockayne Syndrome / pathology*
  • DNA Damage / genetics
  • Gene Expression Regulation
  • Humans
  • Induced Pluripotent Stem Cells / metabolism
  • Induced Pluripotent Stem Cells / pathology*
  • Models, Biological
  • Oxidative Stress*
  • Reactive Oxygen Species / metabolism

Substances

  • Reactive Oxygen Species