Catalytic activities of a cocaine hydrolase engineered from human butyrylcholinesterase against (+)- and (-)-cocaine

Chem Biol Interact. 2013 Mar 25;203(1):57-62. doi: 10.1016/j.cbi.2012.08.003. Epub 2012 Aug 11.

Abstract

It can be argued that an ideal anti-cocaine medication would be one that accelerates cocaine metabolism producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e., hydrolysis catalyzed by butyrylcholinesterase (BChE) in plasma. However, wild-type BChE has a low catalytic efficiency against naturally occurring (-)-cocaine. Interestingly, wild-type BChE has a much higher catalytic activity against unnatural (+)-cocaine. According to available positron emission tomography (PET) imaging analysis using [(11)C](-)-cocaine and [(11)C](+)-cocaine tracers in human subjects, only [(11)C](-)-cocaine was observed in the brain, whereas no significant [(11)C](+)-cocaine signal was observed in the brain. The available PET data imply that an effective therapeutic enzyme for treatment of cocaine abuse could be an exogenous cocaine-metabolizing enzyme with a catalytic activity against (-)-cocaine comparable to that of wild-type BChE against (+)-cocaine. Our recently designed A199S/F227A/S287G/A328 W/Y332G mutant of human BChE has a considerably improved catalytic efficiency against (-)-cocaine and has been proven active in vivo. In the present study, we have characterized the catalytic activities of wild-type BChE and the A199S/F227A/S287G/A328 W/Y332G mutant against both (+)- and (-)-cocaine at the same time under the same experimental conditions. Based on the obtained kinetic data, the A199S/F227A/S287G/A328 W/Y332G mutant has a similarly high catalytic efficiency (kcat/KM) against (+)- and (-)-cocaine, and indeed has a catalytic efficiency (k(cat/)K(M) = 1.84 × 10(9) M(-1) min(-1)) against (-)-cocaine comparable to that (k(cat)/K(M) = 1.37 × 10(9) M(-1) min(-1)) of wild-type BChE against (+)-cocaine. Thus, the mutant may be used to effectively prevent (-)-cocaine from entering brain and producing physiological effects in the enzyme-based treatment of cocaine abuse.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Brain / diagnostic imaging
  • Brain / metabolism
  • Butyrylcholinesterase / chemistry
  • Butyrylcholinesterase / genetics*
  • Butyrylcholinesterase / metabolism*
  • Carbon Radioisotopes
  • Cocaine / chemistry
  • Cocaine / metabolism*
  • Cocaine-Related Disorders / diagnostic imaging
  • Cocaine-Related Disorders / drug therapy
  • Cocaine-Related Disorders / metabolism
  • Humans
  • Kinetics
  • Models, Molecular
  • Mutagenesis, Site-Directed
  • Mutant Proteins / chemistry
  • Mutant Proteins / genetics
  • Mutant Proteins / metabolism
  • Positron-Emission Tomography
  • Protein Conformation
  • Protein Engineering
  • Radiopharmaceuticals
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Stereoisomerism
  • Substrate Specificity

Substances

  • Carbon Radioisotopes
  • Mutant Proteins
  • Radiopharmaceuticals
  • Recombinant Proteins
  • Butyrylcholinesterase
  • Cocaine