Gene network analysis leads to functional validation of pathways linked to cancer cell growth and survival

Biotechnol J. 2012 Nov;7(11):1395-404. doi: 10.1002/biot.201200188. Epub 2012 Oct 2.

Abstract

Hepatocellular carcinoma (HCC) represents one of the most frequently diagnosed human cancers; however, there are currently few treatment alternatives to surgical resection. In this study we performed bioinformatic analysis of previously published transcriptomic data in order to characterize liver specific networks, including biological functions, signaling pathways and transcription factors, potentially dysregulated in HCC. By incorporating specific signaling inhibitors into real-time proliferation assays using HepG2 cells, we then validated these in silico results. We found that G protein subunits Gi/G0, protein kinase C, Mek1/2, and Erk1/2 (P42/44), JAK1, PPARA and NFκB p65 subunit were the major signaling molecules required for survival and proliferation of human HCC cell lines. We also found that these pathways regulate the expression of key hepatic transcription factors involved in cell differentiation, such as CEBPA, EGR1, FOXM1 and PPARs. By combining bioinformatic and functional analyses, major signaling pathways related to tumorigenicity in HCC are revealed, thereby elucidating potential targets for drug therapies.

MeSH terms

  • Carcinoma, Hepatocellular / genetics*
  • Carcinoma, Hepatocellular / metabolism
  • Carcinoma, Hepatocellular / pathology*
  • Cell Growth Processes / genetics
  • Cell Line, Tumor
  • Cell Survival / genetics
  • Cluster Analysis
  • Computational Biology
  • Gene Expression Profiling
  • Gene Expression Regulation, Neoplastic
  • Gene Regulatory Networks*
  • Hep G2 Cells
  • Humans
  • Liver / metabolism
  • Liver Neoplasms / genetics*
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / pathology
  • MAP Kinase Signaling System
  • Oligonucleotide Array Sequence Analysis
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Real-Time Polymerase Chain Reaction
  • Signal Transduction / genetics
  • Transcription Factors / genetics
  • Transcription Factors / metabolism
  • Transcriptome

Substances

  • RNA, Messenger
  • Transcription Factors