SH3GL2 is frequently deleted in non-small cell lung cancer and downregulates tumor growth by modulating EGFR signaling

J Mol Med (Berl). 2013 Mar;91(3):381-93. doi: 10.1007/s00109-012-0955-3. Epub 2012 Sep 12.

Abstract

The purpose of this study was to identify key genetic pathways involved in non-small cell lung cancer (NSCLC) and understand their role in tumor progression. We performed a genome wide scanning using paired tumors and corresponding 16 mucosal biopsies from four follow-up lung cancer patients on Affymetrix 250K-NSpI array platform. We found that a single gene SH3GL2 located on human chromosome 9p22 was most frequently deleted in all the tumors and corresponding mucosal biopsies. We further validated the alteration pattern of SH3GL2 in a substantial number of primary NSCLC tumors at DNA and protein level. We also overexpressed wild-type SH3GL2 in three NSCLC cell lines to understand its role in NSCLC progression. Validation in 116 primary NSCLC tumors confirmed frequent loss of heterozygosity of SH3GL2 in overall 51 % (49/97) of the informative cases. We found significantly low (p = 0.0015) SH3GL2 protein expression in 71 % (43/60) primary tumors. Forced overexpression of wild-type (wt) SH3GL2 in three NSCLC cell lines resulted in a marked reduction of active epidermal growth factor receptor (EGFR) expression and an increase in EGFR internalization and degradation. Significantly decreased in vitro (p = 0.0015-0.030) and in vivo (p = 0.016) cellular growth, invasion (p = 0.029-0.049), and colony formation (p = 0.023-0.039) were also evident in the wt-SH3GL2-transfected cells accompanied by markedly low expression of activated AKT(Ser(473)), STAT3 (Tyr(705)), and PI3K. Downregulation of SH3GL2 interactor USP9X and activated ß-catenin was also evident in the SH3GL2-transfected cells. Our results indicate that SH3GL2 is frequently deleted in NSCLC and regulates cellular growth and invasion by modulating EGFR function.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptor Proteins, Signal Transducing / genetics*
  • Animals
  • Carcinoma, Non-Small-Cell Lung / genetics*
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Cell Line, Tumor
  • DNA Methylation / genetics
  • ErbB Receptors / genetics*
  • Gene Expression Regulation, Neoplastic
  • Humans
  • In Situ Hybridization, Fluorescence
  • Loss of Heterozygosity / genetics
  • Lung Neoplasms / genetics*
  • Lung Neoplasms / pathology
  • Mice
  • Neoplasm Invasiveness
  • Polymorphism, Single Nucleotide
  • Signal Transduction / genetics
  • Xenograft Model Antitumor Assays

Substances

  • Adaptor Proteins, Signal Transducing
  • SH3GL2 protein, human
  • EGFR protein, human
  • ErbB Receptors