Roles of Keap1-Nrf2 system in upper aerodigestive tract carcinogenesis

Cancer Prev Res (Phila). 2013 Feb;6(2):149-59. doi: 10.1158/1940-6207.CAPR-12-0401-T. Epub 2012 Dec 18.

Abstract

Cancers in the upper aerodigestive tract, including cancers of the tongue and the esophagus, are the third leading cause of cancer-related deaths in the world, and oxidative stress is well recognized as one of the major risk factors for carcinogenesis. The Keap1-Nrf2 system plays a critical role in cellular defense against oxidative stress, but little is known about its association with upper aerodigestive tract carcinogenesis. In this study, we examined whether loss of Nrf2-function exacerbates carcinogenesis by using an experimental carcinogenesis model that is induced by 4-nitroquinoline-1-oxide (4NQO). We found that Nrf2-knockout (Nrf2-KO) mice were more susceptible to 4NQO-induced tongue and esophageal carcinogenesis than wild-type mice, which suggests that Nrf2 is important for cancer prevention. We also examined how the suppression of Keap1 function or the induction of Nrf2 activity affected 4NQO carcinogenesis. Keap1-knockdown (Keap1-KD) mice were resistant to 4NQO-induced tongue and esophageal carcinogenesis. Importantly, no growth advantage was observed in tongue tumors in the Keap1-KD mice. These results show that the Keap1-Nrf2 system regulates an important defense mechanism against upper aerodigestive tract carcinogenesis. In addition to several important functions of Nrf2 that lead to cancer chemoprevention, we hypothesize that a mechanical defense of thickened keratin layers may also be a chemopreventive factor because thickened, stratified, squamous epithelium was found on the tongue of Keap1-KD mice.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 4-Nitroquinoline-1-oxide
  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism
  • Adaptor Proteins, Signal Transducing / physiology*
  • Animals
  • Cell Transformation, Neoplastic / genetics*
  • Cytoskeletal Proteins / genetics
  • Cytoskeletal Proteins / metabolism
  • Cytoskeletal Proteins / physiology*
  • Female
  • Head and Neck Neoplasms / chemically induced
  • Head and Neck Neoplasms / genetics*
  • Head and Neck Neoplasms / pathology
  • Humans
  • Kelch-Like ECH-Associated Protein 1
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • NF-E2-Related Factor 2 / genetics
  • NF-E2-Related Factor 2 / metabolism
  • NF-E2-Related Factor 2 / physiology*
  • Tongue Neoplasms / chemically induced
  • Tongue Neoplasms / genetics
  • Tongue Neoplasms / pathology
  • Tumor Cells, Cultured

Substances

  • Adaptor Proteins, Signal Transducing
  • Cytoskeletal Proteins
  • Keap1 protein, mouse
  • Kelch-Like ECH-Associated Protein 1
  • NF-E2-Related Factor 2
  • Nfe2l2 protein, mouse
  • 4-Nitroquinoline-1-oxide