PuF, an antimetastatic and developmental signaling protein, interacts with the Alzheimer's amyloid-β precursor protein via a tissue-specific proximal regulatory element (PRE)

BMC Genomics. 2013 Jan 31:14:68. doi: 10.1186/1471-2164-14-68.

Abstract

Background: Alzheimer's disease (AD) is intimately tied to amyloid-β (Aβ) peptide. Extraneuronal brain plaques consisting primarily of Aβ aggregates are a hallmark of AD. Intraneuronal Aβ subunits are strongly implicated in disease progression. Protein sequence mutations of the Aβ precursor protein (APP) account for a small proportion of AD cases, suggesting that regulation of the associated gene (APP) may play a more important role in AD etiology. The APP promoter possesses a novel 30 nucleotide sequence, or "proximal regulatory element" (PRE), at -76/-47, from the +1 transcription start site that confers cell type specificity. This PRE contains sequences that make it vulnerable to epigenetic modification and may present a viable target for drug studies. We examined PRE-nuclear protein interaction by gel electrophoretic mobility shift assay (EMSA) and PRE mutant EMSA. This was followed by functional studies of PRE mutant/reporter gene fusion clones.

Results: EMSA probed with the PRE showed DNA-protein interaction in multiple nuclear extracts and in human brain tissue nuclear extract in a tissue-type specific manner. We identified transcription factors that are likely to bind the PRE, using competition gel shift and gel supershift: Activator protein 2 (AP2), nm23 nucleoside diphosphate kinase/metastatic inhibitory protein (PuF), and specificity protein 1 (SP1). These sites crossed a known single nucleotide polymorphism (SNP). EMSA with PRE mutants and promoter/reporter clone transfection analysis further implicated PuF in cells and extracts. Functional assays of mutant/reporter clone transfections were evaluated by ELISA of reporter protein levels. EMSA and ELISA results correlated by meta-analysis.

Conclusions: We propose that PuF may regulate the APP gene promoter and that AD risk may be increased by interference with PuF regulation at the PRE. PuF is targeted by calcium/calmodulin-dependent protein kinase II inhibitor 1, which also interacts with the integrins. These proteins are connected to vital cellular and neurological functions. In addition, the transcription factor PuF is a known inhibitor of metastasis and regulates cell growth during development. Given that APP is a known cell adhesion protein and ferroxidase, this suggests biochemical links among cell signaling, the cell cycle, iron metabolism in cancer, and AD in the context of overall aging.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Alzheimer Disease / metabolism*
  • Amyloid beta-Protein Precursor / genetics*
  • Amyloid beta-Protein Precursor / metabolism*
  • Animals
  • Base Sequence
  • Binding Sites
  • Conserved Sequence
  • DNA / genetics
  • DNA / metabolism
  • Genes, Reporter / genetics
  • Genome, Human / genetics
  • HeLa Cells
  • Humans
  • Mutation
  • NM23 Nucleoside Diphosphate Kinases / metabolism*
  • Organ Specificity
  • PC12 Cells
  • Protein Binding
  • Rats
  • Regulatory Sequences, Nucleic Acid* / genetics

Substances

  • Amyloid beta-Protein Precursor
  • NM23 Nucleoside Diphosphate Kinases
  • DNA
  • NME2 protein, human