The re-expression of the epigenetically silenced e-cadherin gene by a polyamine analogue lysine-specific demethylase-1 (LSD1) inhibitor in human acute myeloid leukemia cell lines

Amino Acids. 2014 Mar;46(3):585-94. doi: 10.1007/s00726-013-1485-1. Epub 2013 Mar 19.

Abstract

Aberrant epigenetic silencing of tumor suppressor genes is a common feature observed during the transformation process of many cancers, including those of hematologic origin. Histone modifications, including acetylation, phosphorylation, and methylation, collaborate with DNA CpG island methylation to regulate gene expression. The dynamic process of histone methylation is the latest of these epigenetic modifications to be described, and the identification and characterization of LSD1 as a demethylase of lysine 4 of histone H3 (H3K4) has confirmed that both the enzyme and the modified histone play important roles as regulators of gene expression. LSD1 activity contributes to the suppression of gene expression by demethylating promoter-region mono- and dimethyl-H3K4 histone marks that are associated with active gene expression. As most post-translational modifications are reversible, the enzymes involved in the modification of histones have become targets for chemotherapeutic intervention. In this study, we examined the effects of the polyamine analogue LSD1 inhibitor 2d (1,15-bis{N (5)-[3,3-(diphenyl)propyl]-N(1)-biguanido}-4,12-diazapentadecane) in human acute myeloid leukemia (AML) cell lines. In each line studied, 2d evoked cytotoxicity and inhibited LSD1 activity, as evidenced by increases in the global levels of mono- and di-methylated H3K4 proteins. Global increases in other chromatin modifications were also observed following exposure to 2d, suggesting a broad response to this compound with respect to chromatin regulation. On a gene-specific level, treatment with 2d resulted in the re-expression of e-cadherin, a tumor suppressor gene frequently silenced by epigenetic modification in AML. Quantitative chromatin immunoprecipitation analysis of the e-cadherin promoter further confirmed that this re-expression was concurrent with changes in both active and repressive histone marks that were consistent with LSD1 inhibition. As hematologic malignancies have demonstrated promising clinical responses to agents targeting epigenetic silencing, this polyamine analogue LSD1 inhibitor presents an exciting new avenue for the development of novel therapeutic agents for the treatment of AML.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Benzhydryl Compounds / chemistry
  • Benzhydryl Compounds / pharmacology*
  • Cadherins / genetics*
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • Enzyme Inhibitors / chemistry
  • Enzyme Inhibitors / pharmacology*
  • Epigenesis, Genetic / genetics*
  • Gene Silencing*
  • Guanidines / chemistry
  • Guanidines / pharmacology*
  • HL-60 Cells
  • Histone Demethylases / antagonists & inhibitors*
  • Histone Demethylases / metabolism
  • Humans
  • Leukemia, Myeloid, Acute / drug therapy*
  • Leukemia, Myeloid, Acute / metabolism
  • Leukemia, Myeloid, Acute / pathology
  • Structure-Activity Relationship
  • Tumor Cells, Cultured

Substances

  • 1,15-bis(N5-(3,3-(diphenyl)propyl)-N1-biguanido)-4,12-diazapentadecane
  • Benzhydryl Compounds
  • Cadherins
  • Enzyme Inhibitors
  • Guanidines
  • Histone Demethylases
  • KDM1A protein, human