Genomic instability may originate from imatinib-refractory chronic myeloid leukemia stem cells

Blood. 2013 May 16;121(20):4175-83. doi: 10.1182/blood-2012-11-466938. Epub 2013 Mar 29.

Abstract

Genomic instability is a hallmark of chronic myeloid leukemia in chronic phase (CML-CP) resulting in BCR-ABL1 mutations encoding resistance to tyrosine kinase inhibitors (TKIs) and/or additional chromosomal aberrations leading to disease relapse and/or malignant progression. TKI-naive and TKI-treated leukemia stem cells (LSCs) and leukemia progenitor cells (LPCs) accumulate high levels of reactive oxygen species (ROS) and oxidative DNA damage. To determine the role of TKI-refractory LSCs in genomic instability, we used a murine model of CML-CP where ROS-induced oxidative DNA damage was elevated in LSCs, including quiescent LSCs, but not in LPCs. ROS-induced oxidative DNA damage in LSCs caused clinically relevant genomic instability in CML-CP-like mice, such as TKI-resistant BCR-ABL1 mutations (E255K, T315I, H396P), deletions in Ikzf1 and Trp53, and additions in Zfp423 and Idh1. Despite inhibition of BCR-ABL1 kinase, imatinib did not downregulate ROS and oxidative DNA damage in TKI-refractory LSCs to the levels detected in normal cells, and CML-CP-like mice treated with imatinib continued to accumulate clinically relevant genetic aberrations. Inhibition of class I p21-activated protein kinases by IPA3 downregulated ROS in TKI-naive and TKI-treated LSCs. Altogether, we postulate that genomic instability may originate in the most primitive TKI-refractory LSCs in TKI-naive and TKI-treated patients.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / therapeutic use*
  • Benzamides / therapeutic use*
  • Cells, Cultured
  • DNA Damage / drug effects
  • Drug Resistance, Neoplasm / genetics*
  • Genomic Instability* / drug effects
  • Genomic Instability* / physiology
  • Humans
  • Imatinib Mesylate
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / drug therapy
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / genetics*
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / pathology
  • Mice
  • Mice, Transgenic
  • Neoplastic Stem Cells / drug effects
  • Neoplastic Stem Cells / metabolism
  • Neoplastic Stem Cells / pathology
  • Neoplastic Stem Cells / physiology*
  • Oxidative Stress / drug effects
  • Oxidative Stress / genetics
  • Piperazines / therapeutic use*
  • Protein Kinase Inhibitors / pharmacology
  • Protein Kinase Inhibitors / therapeutic use
  • Pyrimidines / therapeutic use*
  • Reactive Oxygen Species / metabolism

Substances

  • Antineoplastic Agents
  • Benzamides
  • Piperazines
  • Protein Kinase Inhibitors
  • Pyrimidines
  • Reactive Oxygen Species
  • Imatinib Mesylate