Glycyrrhiza polysaccharide induces apoptosis and inhibits proliferation of human hepatocellular carcinoma cells by blocking PI3K/AKT signal pathway

Tumour Biol. 2013 Jun;34(3):1381-9. doi: 10.1007/s13277-013-0746-7. Epub 2013 Apr 12.

Abstract

To study the antitumor effect of glycyrrhiza polysaccharide (GPS) on human hepatocellular carcinoma cells and its mechanism, GPS was extracted and identified with phenol-sulfuric acid assay, Limulus amebocytes lysate assay, gel permeation chromatography, and infrared spectroscopy analysis. To study its antitumor function, 4-5-week-old imprinting control region mice were subcutaneously implanted with H22 cells and intragastrically subjected to 1 ml GPS (25, 50, and 75 mg/kg/day), 150 mg/kg cyclophosphamide in a dose of 150 mg/kg, or equal volume of phosphate buffered saline as control. Tumor weights were detected 10 days later. Apoptosis of intraperitoneally cultured and GPS-treated H22 cells was identified by flow cytometry and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide. In vitro, the function of GPS on cell proliferation was applied on BEL7402 cells and confirmed by 4,6-diamidino-z-phenylindole staining. Assessment of the effect of GPS on P53 gene was analyzed by real-time PCR and Western blot, and the effects of GPS on phosphatidylinositol-3 kinase (PI3K), AKT, p-PI3K, and p-AKT were analyzed by Western blot. We extracted the GPS, and it dose-dependently inhibited the tumorigenicity of hepatocellular carcinoma cells in nude mice. GPS treatment resulted in a significant (P<0.05) dose-dependent increase in the number of apoptotic cells in vivo and a significant (P<0.05) dose-dependent decrease in hepatocellular carcinoma cell proliferation in vitro. GPS modified multiple key enzymes (p-PI3K, p-AKT, and P53) in P53/PI3K/AKT signaling pathways on DNA or protein levels. Taken together, we extracted the GPS successfully and our findings suggest that GPS functions as a tumor suppressor through influencing the P53/PI3K/AKT pathway in the carcinogenesis of hepatocellular carcinoma and may have therapeutic implications for the clinical management of hepatocellular carcinoma patients.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects*
  • Blotting, Western
  • Carcinoma, Hepatocellular / drug therapy
  • Carcinoma, Hepatocellular / metabolism
  • Carcinoma, Hepatocellular / pathology*
  • Cell Proliferation / drug effects*
  • Chromatography, Gel
  • Female
  • Flow Cytometry
  • Glycyrrhiza / chemistry*
  • Humans
  • Liver Neoplasms / drug therapy
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / pathology
  • Membrane Potential, Mitochondrial / drug effects
  • Mice
  • Mice, Inbred ICR
  • Mice, Nude
  • Phosphatidylinositol 3-Kinase / genetics
  • Phosphatidylinositol 3-Kinase / metabolism
  • Phosphoinositide-3 Kinase Inhibitors*
  • Plant Extracts / pharmacology
  • Plant Roots / chemistry
  • Plants, Medicinal
  • Polysaccharides / pharmacology*
  • Proto-Oncogene Proteins c-akt / antagonists & inhibitors*
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism
  • RNA, Messenger / genetics
  • Real-Time Polymerase Chain Reaction
  • Reverse Transcriptase Polymerase Chain Reaction
  • Spectrophotometry, Infrared
  • Tumor Cells, Cultured
  • Tumor Suppressor Protein p53 / antagonists & inhibitors
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism

Substances

  • Phosphoinositide-3 Kinase Inhibitors
  • Plant Extracts
  • Polysaccharides
  • RNA, Messenger
  • Tumor Suppressor Protein p53
  • Phosphatidylinositol 3-Kinase
  • Proto-Oncogene Proteins c-akt