PTEN loss mediated Akt activation promotes prostate tumor growth and metastasis via CXCL12/CXCR4 signaling

Mol Cancer. 2013 Jul 31;12(1):85. doi: 10.1186/1476-4598-12-85.

Abstract

Introduction: The chemokine CXCL12, also known as SDF-1, and its receptor, CXCR4, are overexpressed in prostate cancers and in animal models of prostate-specific PTEN deletion, but their regulation is poorly understood. Loss of the tumor suppressor PTEN (phosphatase and tensin homolog) is frequently observed in cancer, resulting in the deregulation of cell survival, growth, and proliferation. We hypothesize that loss of PTEN and subsequent activation of Akt, frequent occurrences in prostate cancer, regulate the CXCL12/CXCR4 signaling axis in tumor growth and bone metastasis.

Methods: Murine prostate epithelial cells from PTEN+/+, PTEN+/-, and PTEN-/- (prostate specific knockdown) mice as well as human prostate cancer cell lines C4-2B, PC3, and DU145 were used in gene expression and invasion studies with Akt inhibition. Additionally, HA-tagged Akt1 was overexpressed in DU145, and tumor growth in subcutaneous and intra-tibia bone metastasis models were analyzed.

Results: Loss of PTEN resulted in increased expression of CXCR4 and CXCL12 and Akt inhibition reversed expression and cellular invasion. These results suggest that loss of PTEN may play a key role in the regulation of this chemokine activity in prostate cancer. Overexpression of Akt1 in DU145 resulted in increased CXCR4 expression, as well as increased proliferation and cell cycle progression. Subcutaneous injection of these cells also resulted in increased tumor growth as compared to neo controls. Akt1 overexpression reversed the osteosclerotic phenotype associated with DU145 cells to an osteolytic phenotype and enhanced intra-osseous tumor growth.

Conclusions: These results suggest the basis for activation of CXCL12 signaling through CXCR4 in prostate cancer driven by the loss of PTEN and subsequent activation of Akt. Akt1-associated CXCL12/CXCR4 signaling promotes tumor growth, suggesting that Akt inhibitors may potentially be employed as anticancer agents to target expansion of PC bone metastases.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Chemokine CXCL12 / genetics
  • Chemokine CXCL12 / metabolism*
  • Humans
  • Male
  • Mice
  • Mice, Knockout
  • PTEN Phosphohydrolase / genetics*
  • PTEN Phosphohydrolase / metabolism
  • Prostatic Neoplasms / genetics*
  • Prostatic Neoplasms / metabolism
  • Prostatic Neoplasms / pathology*
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Receptors, CXCR4 / genetics
  • Receptors, CXCR4 / metabolism*
  • Signal Transduction

Substances

  • Chemokine CXCL12
  • Receptors, CXCR4
  • Proto-Oncogene Proteins c-akt
  • PTEN Phosphohydrolase
  • PTEN protein, human
  • Pten protein, mouse