Interplay between parkin and p53 governs a physiological homeostasis that is disrupted in Parkinson's disease and cerebral cancer

Neurodegener Dis. 2014;13(2-3):118-21. doi: 10.1159/000354075. Epub 2013 Sep 4.

Abstract

Parkin is responsible for most autosomal juvenile recessive cases of Parkinson's disease (PD). Besides its well-characterized function as ubiquitin ligase, we previously established that parkin could repress p53 at the transcriptional level. Interestingly, p53 was recently shown to upregulate parkin, suggesting a feedback loop by which parkin and p53 interplay, thereby contributing to their physiological homeostasis. This equilibrium is disrupted in both PD and cerebral cancer. Thus, when parkin is mutated in PD, its transcriptional ability to repress p53 is abolished. Therefore, p53 elevation could likely contribute to the exacerbated cell death observed in PD-affected brains. Inversely, in brain-associated tumors linked to p53 mutations, the transcriptional control of parkin is reduced, and thereby, parkin expression is lowered. The reduction in parkin level could, in turn, contribute to an increase in the levels of transcriptionally inactive p53 that could explain, at least in part, the defect in cellular apoptotic commitment observed in cerebral cancer. Here, we discuss in detail the various studies demonstrating the importance of the functional interplay between parkin and p53 and its impairment by pathogenic mutations likely contributing to the etiology of PD and gliomas.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Brain Neoplasms / genetics
  • Brain Neoplasms / metabolism*
  • Brain Neoplasms / pathology
  • Gene Expression Regulation*
  • Homeostasis* / physiology
  • Humans
  • Parkinson Disease / genetics
  • Parkinson Disease / metabolism*
  • Parkinson Disease / pathology
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism*
  • Ubiquitin-Protein Ligases / genetics
  • Ubiquitin-Protein Ligases / metabolism*

Substances

  • Tumor Suppressor Protein p53
  • Ubiquitin-Protein Ligases
  • parkin protein