Upregulation of adenylate cyclase 3 (ADCY3) increases the tumorigenic potential of cells by activating the CREB pathway

Oncotarget. 2013 Oct;4(10):1791-803. doi: 10.18632/oncotarget.1324.

Abstract

Adenylate cyclase 3 (ADCY3) is a widely expressed membrane-associated protein in human tissues, which catalyzes the formation of cyclic adenosine-3',5'-monophosphate (cAMP). However, our transcriptome analysis of gastric cancer tissue samples (NCBI GEO GSE30727) revealed that ADCY3 expression was specifically altered in cancer samples. Here we investigated the tumor-promoting effects of ADCY3 overexpression and confirmed a significant correlation between the upregulation of ADCY3 and Lauren's intestinal-type gastric cancers. ADCY3 overexpression increased cell migration, invasion, proliferation, and clonogenicity in HEK293 cells; conversely, silencing ADCY3 expression in SNU-216 cells reduced these phenotypes. Interestingly, ADCY3 overexpression increased both the mRNA level and activity of matrix metalloproteinase 2 (MMP2) and MMP9 by increasing the levels of cAMP and phosphorylated cAMP-responsive element-binding protein (CREB). Consistent with these findings, treatment with a protein kinase A (PKA) inhibitor decreased MMP2 and MMP9 expression levels in ADCY3-overexpressing cells. Knockdown of ADCY3 expression by stable shRNA in human gastric cancer cells suppressed tumor growth in a tumor xenograft model. Thus, ADCY3 overexpression may exert its tumor-promoting effects via the cAMP/PKA/CREB pathway. Additionally, bisulfite sequencing of the ADCY3 promoter region revealed that gene expression was reduced by hypermethylation of CpG sites, and increased by 5-Aza-2'-deoxycytidine (5-Aza-dC)-induced demethylation. Our study is the first to report an association of ADCY3 with gastric cancer as well as its tumorigenic potentials. In addition, we demonstrate that the expression of ADCY3 is regulated through an epigenetic mechanism. Further study on the mechanism of ADCY3 in tumorigenesis will provide the basis as a new molecular target of gastric cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenylyl Cyclases / biosynthesis
  • Adenylyl Cyclases / genetics*
  • Adenylyl Cyclases / metabolism
  • Animals
  • Cell Growth Processes / physiology
  • Cell Line, Tumor
  • Cyclic AMP Response Element-Binding Protein / genetics
  • Cyclic AMP Response Element-Binding Protein / metabolism*
  • DNA Methylation
  • Epigenesis, Genetic
  • Gene Expression Regulation, Neoplastic*
  • HEK293 Cells
  • Humans
  • Immunohistochemistry
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Neoplasms / genetics*
  • Neoplasms / metabolism
  • Neoplasms / pathology*
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism*
  • Signal Transduction
  • Transfection
  • Up-Regulation
  • Xenograft Model Antitumor Assays

Substances

  • Cyclic AMP Response Element-Binding Protein
  • RNA, Messenger
  • Adenylyl Cyclases
  • adenylate cyclase 3