BIN1 is decreased in sporadic but not familial Alzheimer's disease or in aging

PLoS One. 2013 Oct 21;8(10):e78806. doi: 10.1371/journal.pone.0078806. eCollection 2013.

Abstract

Bridging integrator 1 (BIN1) has been implicated in sporadic Alzheimer's disease (AD) by a number of genome wide association studies (GWAS) in a variety of populations. Here we measured BIN1 in frontal cortex samples from 24 sporadic AD and 24 age-matched non-dementia brains and correlated the expression of this protein with markers of AD. BIN1 was reduced by 87% (p=0.007) in sporadic AD compared to non-dementia controls, but BIN1 in sporadic AD did not correlate with soluble Aβ (r(s)=-0.084, p=0.698), insoluble Aβ (r(s)=0.237, p=0.269), Aβ plaque load (r(s)=0.063, p=0.771) or phospho-tau load (r(s)=-0.160, p=0.489). In contrast to our findings in sporadic AD, BIN1 was unchanged in the hippocampus from 6 cases of familial AD compared to 6 age-matched controls (p=0.488). BIN1 declined with age in a cohort of non-dementia control cases between 25 and 88 years but the correlation was not significant (rs=-0.449, p=0.081). Although BIN1 is known to have a role in endocytosis, and the processing of the amyloid precursor protein (APP) to form amyloid-β (Aβ) peptides is dependent on endocytosis, knockdown of BIN1 by targeted siRNA or the overexpression of BIN1 in a human neuroblastoma cell line (SH-SY5Y) had no effect on APP processing. These data suggest that the alteration in BIN1 is involved in the pathogenesis of sporadic, but not familial AD and is not a consequence of AD neurodegeneration or the ageing process, a finding in keeping with the numerous GWAS that implicate BIN1 in sporadic AD. However, the mechanism of its contribution remains to be established.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing / deficiency
  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism*
  • Adult
  • Aged
  • Aged, 80 and over
  • Aging / metabolism*
  • Alzheimer Disease / metabolism*
  • Alzheimer Disease / physiopathology
  • Cell Line, Tumor
  • Female
  • Gene Expression Regulation
  • Gene Knockdown Techniques
  • Humans
  • Male
  • Middle Aged
  • Nuclear Proteins / deficiency
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism*
  • Tumor Suppressor Proteins / deficiency
  • Tumor Suppressor Proteins / genetics
  • Tumor Suppressor Proteins / metabolism*

Substances

  • Adaptor Proteins, Signal Transducing
  • BIN1 protein, human
  • Nuclear Proteins
  • Tumor Suppressor Proteins