Co-expression of SERCA isoforms, phospholamban and sarcolipin in human skeletal muscle fibers

PLoS One. 2013 Dec 16;8(12):e84304. doi: 10.1371/journal.pone.0084304. eCollection 2013.

Abstract

Sarcolipin (SLN) and phospholamban (PLN) inhibit the activity of sarco(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs) by reducing their apparent affinity for Ca(2+). A ternary complex between SLN, PLN, and SERCAs results in super-inhibition of SERCA activity. Analysis of skeletal muscle homogenate has limited our current understanding of whether SLN and PLN regulate SERCA1a, SERCA2a, or both in skeletal muscle and whether SLN and PLN are co-expressed in skeletal muscle fibers. Biopsies from human vastus lateralis were analyzed through single fiber Western blotting and immunohisto/fluorescence staining to circumvent this limitation. With a newly generated SLN antibody, we report for the first time that SLN protein is present in human skeletal muscle. Addition of the SLN antibody (50 µg) to vastus lateralis homogenates increased the apparent Ca(2+) affinity of SERCA (K Ca, pCa units) (-Ab, 5.85 ± 0.02 vs. +Ab, 5.95 ± 0.02) and maximal SERCA activity (μmol/g protein/min) (-Ab, 122 ± 6.4 vs. +Ab, 159 ± 11) demonstrating a functional interaction between SLN and SERCAs in human vastus lateralis. Specifically, our results suggest that although SLN and PLN may preferentially regulate SERCA1a, and SERCA2a, respectively, physiologically they both may regulate either SERCA isoform. Furthermore, we show that SLN and PLN co-immunoprecipitate in human vastus lateralis homogenate and are simultaneously expressed in 81% of the fibers analyzed with Western blotting which implies that super-inhibition of SERCA may exist in human skeletal muscle. Finally, we demonstrate unequivocally that mouse soleus contains PLN protein suggesting that super-inhibition of SERCA may also be important physiologically in rodent skeletal muscle.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Animals
  • Calcium / metabolism
  • Calcium-Binding Proteins / genetics
  • Calcium-Binding Proteins / metabolism*
  • Enzyme Activation
  • Gene Expression
  • Humans
  • Isoenzymes
  • Male
  • Mice
  • Muscle Fibers, Fast-Twitch / metabolism
  • Muscle Fibers, Skeletal / metabolism*
  • Muscle Fibers, Slow-Twitch / metabolism
  • Muscle Proteins / genetics
  • Muscle Proteins / metabolism*
  • Myosin Heavy Chains / metabolism
  • Protein Binding
  • Proteolipids / genetics
  • Proteolipids / metabolism*
  • Sarcoplasmic Reticulum / metabolism
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases / genetics
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases / metabolism*
  • Young Adult

Substances

  • Calcium-Binding Proteins
  • Isoenzymes
  • Muscle Proteins
  • Proteolipids
  • phospholamban
  • sarcolipin
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases
  • Myosin Heavy Chains
  • Calcium