A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant

Mol Cell Proteomics. 2014 Aug;13(8):2031-41. doi: 10.1074/mcp.M113.035402. Epub 2014 Jan 9.

Abstract

N-terminal acetylation (Nt-acetylation) occurs on the majority of eukaryotic proteins and is catalyzed by N-terminal acetyltransferases (NATs). Nt-acetylation is increasingly recognized as a vital modification with functional implications ranging from protein degradation to protein localization. Although early genetic studies in yeast demonstrated that NAT-deletion strains displayed a variety of phenotypes, only recently, the first human genetic disorder caused by a mutation in a NAT gene was reported; boys diagnosed with the X-linked Ogden syndrome harbor a p.Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of the NatA complex, and suffer from global developmental delays and lethality during infancy. Here, we describe a Saccharomyces cerevisiae model developed by introducing the human wild-type or mutant NatA complex into yeast lacking NatA (NatA-Δ). The wild-type human NatA complex phenotypically complemented the NatA-Δ strain, whereas only a partial rescue was observed for the Ogden mutant NatA complex suggesting that hNaa10 S37P is only partially functional in vivo. Immunoprecipitation experiments revealed a reduced subunit complexation for the mutant hNatA S37P next to a reduced in vitro catalytic activity. We performed quantitative Nt-acetylome analyses on a control yeast strain (yNatA), a yeast NatA deletion strain (yNatA-Δ), a yeast NatA deletion strain expressing wild-type human NatA (hNatA), and a yeast NatA deletion strain expressing mutant human NatA (hNatA S37P). Interestingly, a generally reduced degree of Nt-acetylation was observed among a large group of NatA substrates in the yeast expressing mutant hNatA as compared with yeast expressing wild-type hNatA. Combined, these data provide strong support for the functional impairment of hNaa10 S37P in vivo and suggest that reduced Nt-acetylation of one or more target substrates contributes to the pathogenesis of the Ogden syndrome. Comparative analysis between human and yeast NatA also provided new insights into the co-evolution of the NatA complexes and their substrates. For instance, (Met-)Ala- N termini are more prevalent in the human proteome as compared with the yeast proteome, and hNatA displays a preference toward these N termini as compared with yNatA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylation
  • Amino Acid Substitution
  • Humans
  • N-Terminal Acetyltransferase A / genetics
  • N-Terminal Acetyltransferase A / metabolism*
  • N-Terminal Acetyltransferase E / genetics
  • N-Terminal Acetyltransferase E / metabolism*
  • N-Terminal Acetyltransferases / genetics
  • N-Terminal Acetyltransferases / metabolism*
  • Phenotype
  • Proline / metabolism
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / growth & development*
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*
  • Serine / metabolism
  • Species Specificity

Substances

  • Saccharomyces cerevisiae Proteins
  • Serine
  • Proline
  • N-Terminal Acetyltransferase A
  • NAA10 protein, human
  • N-Terminal Acetyltransferase E
  • N-Terminal Acetyltransferases