Regulation of pS2 gene expression by affinity labeling and reversibly binding estrogens and antiestrogens: comparison of effects on the native gene and on pS2-chloramphenicol acetyltransferase fusion genes transfected into MCF-7 human breast cancer cells

Mol Endocrinol. 1988 Oct;2(10):936-45. doi: 10.1210/mend-2-10-936.

Abstract

We have examined the effects of reversibly and irreversibly binding estrogenic and antiestrogenic ligands for the estrogen receptor on pS2 RNA accumulation in MCF-7 human breast cancer cells and on pS2-chloramphenicol acetyl transferase (CAT) fusion gene expression in transfected MCF-7 cells. In MCF-7 cells grown in the absence of estrogens, the reversibly binding estrogen, estradiol, and the affinity labeling estrogen, ketononestrol aziridine, KNA, evoked a 13-fold increase in pS2 RNA level. The reversibly binding antiestrogen trans-hydroxytamoxifen and the affinity labeling antiestrogens tamoxifen aziridine or desmethylnafoxidine aziridine behaved as partial agonists/antagonists. In thymidine kinase-chloramphenicol acetyltransferase (tk-CAT) fusion genes containing a 1000 base pair fragment of the pS2 5'-flanking region encompassing the estrogen responsive element of the gene [pS2 (-1100/-90) tk-CAT], estradiol and ketononestrol aziridine evoked a marked stimulation of CAT activity and, in transfected cells grown in both the presence or absence of the weak estrogen phenol red, the antiestrogens behaved as partial agonists/antagonists. This pS2 5'-flanking region displayed both estrogen-dependent and estrogen-independent enhancer activity as monitored by stimulation of CAT activity. Hormonal regulation of the transfected pS2 fusion gene was similar to that observed in the native pS2 gene of MCF-7 cells; however, antiestrogens, while still partial agonists-antagonists, were relatively more agonistic on the transfected fusion gene than on the native gene. One antiestrogen (ICI 164,384) that behaved as a pure estrogen antagonist on the native gene was a partial agonist-antagonist of pS2 gene expression in the plasmid. This study illustrates that the hormonal regulation of the pS2 gene, as characterized by the agonist-antagonist balance of estrogens and antiestrogens, is influenced by the DNA context of the pS2 estrogen responsive element. Also, the fact that estrogens and antiestrogens that form covalent bonds with the estrogen receptor modulate activity of the native pS2 gene and the pS2-tk-CAT fusion gene in a manner similar to that of their reversibly binding counterparts suggests that it may be possible to use these irreversibly binding ligands to follow the interaction of hormone-receptor complexes with regions regulating estrogenic stimulation of the pS2 gene.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Affinity Labels
  • Binding, Competitive
  • Breast Neoplasms / drug therapy
  • Chloramphenicol O-Acetyltransferase / genetics*
  • Cloning, Molecular*
  • Estrogen Antagonists / pharmacology*
  • Estrogens / pharmacology*
  • Gene Expression Regulation*
  • Humans
  • Nucleic Acid Hybridization
  • RNA / genetics
  • Receptors, Estrogen / drug effects
  • Transfection
  • Tumor Cells, Cultured

Substances

  • Affinity Labels
  • Estrogen Antagonists
  • Estrogens
  • Receptors, Estrogen
  • RNA
  • Chloramphenicol O-Acetyltransferase