Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC

J Clin Invest. 2014 May;124(5):2037-49. doi: 10.1172/JCI72522. Epub 2014 Apr 8.

Abstract

Genome-wide analyses determined previously that the receptor tyrosine kinase (RTK) EPHA2 is commonly overexpressed in non-small cell lung cancers (NSCLCs). EPHA2 overexpression is associated with poor clinical outcomes; therefore, EPHA2 may represent a promising therapeutic target for patients with NSCLC. In support of this hypothesis, here we have shown that targeted disruption of EphA2 in a murine model of aggressive Kras-mutant NSCLC impairs tumor growth. Knockdown of EPHA2 in human NSCLC cell lines reduced cell growth and viability, confirming the epithelial cell autonomous requirements for EPHA2 in NSCLCs. Targeting EPHA2 in NSCLCs decreased S6K1-mediated phosphorylation of cell death agonist BAD and induced apoptosis. Induction of EPHA2 knockdown within established NSCLC tumors in a subcutaneous murine model reduced tumor volume and induced tumor cell death. Furthermore, an ATP-competitive EPHA2 RTK inhibitor, ALW-II-41-27, reduced the number of viable NSCLC cells in a time-dependent and dose-dependent manner in vitro and induced tumor regression in human NSCLC xenografts in vivo. Collectively, these data demonstrate a role for EPHA2 in the maintenance and progression of NSCLCs and provide evidence that ALW-II-41-27 effectively inhibits EPHA2-mediated tumor growth in preclinical models of NSCLC.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Apoptosis*
  • Carcinoma, Non-Small-Cell Lung / drug therapy
  • Carcinoma, Non-Small-Cell Lung / enzymology*
  • Carcinoma, Non-Small-Cell Lung / genetics
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Cell Line, Tumor
  • Cell Survival
  • Heterografts
  • Humans
  • Lung Neoplasms / drug therapy
  • Lung Neoplasms / enzymology*
  • Lung Neoplasms / genetics
  • Lung Neoplasms / pathology
  • Mice
  • Mice, Knockout
  • Neoplasm Proteins / antagonists & inhibitors
  • Neoplasm Proteins / genetics
  • Neoplasm Proteins / metabolism*
  • Neoplasm Transplantation
  • Protein Kinase Inhibitors / pharmacology
  • Receptor, EphA2 / antagonists & inhibitors
  • Receptor, EphA2 / genetics
  • Receptor, EphA2 / metabolism*
  • Ribosomal Protein S6 Kinases, 70-kDa / genetics
  • Ribosomal Protein S6 Kinases, 70-kDa / metabolism
  • Ribosomal Protein S6 Kinases, 90-kDa / genetics
  • Ribosomal Protein S6 Kinases, 90-kDa / metabolism

Substances

  • Neoplasm Proteins
  • Protein Kinase Inhibitors
  • Receptor, EphA2
  • Ribosomal Protein S6 Kinases, 70-kDa
  • Ribosomal Protein S6 Kinases, 90-kDa
  • Rps6ka1 protein, mouse
  • ribosomal protein S6 kinase, 70kD, polypeptide 1