Angiotensin 1-7 reduces mortality and rupture of intracranial aneurysms in mice

Hypertension. 2014 Aug;64(2):362-8. doi: 10.1161/HYPERTENSIONAHA.114.03415. Epub 2014 May 5.

Abstract

Angiotensin II (Ang II) stimulates vascular inflammation, oxidative stress, and formation and rupture of intracranial aneurysms in mice. Because Ang 1-7 acts on Mas receptors and generally counteracts deleterious effects of Ang II, we tested the hypothesis that Ang 1-7 attenuates formation and rupture of intracranial aneurysms. Intracranial aneurysms were induced in wild-type and Mas receptor-deficient mice using a combination of Ang II-induced hypertension and intracranial injection of elastase in the basal cistern. Mice received elastase+Ang II alone or a combination of elastase+Ang II+Ang 1-7. Aneurysm formation, prevalence of subarachnoid hemorrhage, mortality, and expression of molecules involved in vascular injury were assessed. Systolic blood pressure was similar in mice receiving elastase+Ang II (mean±SE, 148±5 mm Hg) or elastase+Ang II+Ang 1-7 (144±5 mm Hg). Aneurysm formation was also similar in mice receiving elastase+Ang II (89%) or elastase+Ang II+Ang 1-7 (84%). However, mice that received elastase+Ang II+Ang 1-7 had reduced mortality (from 64% to 36%; P<0.05) and prevalence of subarachnoid hemorrhage (from 75% to 48%; P<0.05). In cerebral arteries, expression of the inflammatory markers, Nox2 and catalase increased similarly in elastase+Ang II or elastase+Ang II+Ang 1-7 groups. Ang 1-7 increased the expression of cyclooxygenase-2 and decreased the expression of matrix metalloproteinase-9 induced by elastase+Ang II (P<0.05). In Mas receptor-deficient mice, systolic blood pressure, mortality, and prevalence of subarachnoid hemorrhage were similar (P>0.05) in groups treated with elastase+Ang II or elastase+Ang II+Ang 1-7. The expression of Mas receptor was detected by immunohistochemistry in samples of human intracranial arteries and aneurysms. In conclusion, without attenuating Ang II-induced hypertension, Ang 1-7 decreased mortality and rupture of intracranial aneurysms in mice through a Mas receptor-dependent pathway.

Keywords: angiotein (1–7); angiotensin (1–7) receptor Mas, human; hypertension; intracranial aneurysm; subarachnoid hemorrhage.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aneurysm, Ruptured / drug therapy*
  • Aneurysm, Ruptured / mortality
  • Aneurysm, Ruptured / prevention & control
  • Angiotensin I / pharmacology
  • Angiotensin I / therapeutic use*
  • Animals
  • Blood Pressure / drug effects
  • Humans
  • Intracranial Aneurysm / drug therapy*
  • Intracranial Aneurysm / mortality
  • Mice
  • Mice, Knockout
  • Oxidative Stress / drug effects
  • Peptide Fragments / pharmacology
  • Peptide Fragments / therapeutic use*
  • Proto-Oncogene Mas
  • Proto-Oncogene Proteins / genetics
  • Proto-Oncogene Proteins / metabolism
  • Receptors, G-Protein-Coupled / genetics
  • Receptors, G-Protein-Coupled / metabolism

Substances

  • Peptide Fragments
  • Proto-Oncogene Mas
  • Proto-Oncogene Proteins
  • Receptors, G-Protein-Coupled
  • Angiotensin I
  • angiotensin I (1-7)