Correlation of HOXD3 promoter hypermethylation with clinical and pathologic features in screening prostate biopsies

Prostate. 2014 May;74(7):714-21. doi: 10.1002/pros.22790.

Abstract

Background: Molecular markers that can discriminate indolent cancers from aggressive ones may improve the management of prostate cancer and minimize unnecessary treatment.Aberrant DNA methylation is a common epigenetic event in cancers and HOXD3 promoter hypermethylation (H3PH) has been found in prostate cancer. Our objective was to evaluate the relationship between H3PH and clinicopathologic features in screening prostate biopsies.

Methods: Ninety-two patients who underwent a prostate biopsy at our institution between October 2011 and May 2012 were included in this study. The core with the greatest percentage of the highest grade disease was analyzed for H3PH by methylation-specific PCR. Correlational analysis was used to analyze the relationship between H3PH and various clinical parameters. Chi-square analysis was used to compare H3PH status between benign and malignant disease.

Results: Of the 80 biopsies with HOXD3 methylation status assessable, 66 sets were confirmed to have cancer. In the 14 biopsies with benign disease there was minimal H3PH with the mean percentage of methylation reference (PMR) of 0.7%. In contrast, the HOXD3 promoter was hypermethylated in 16.7% of all cancers and in 50% of high risk tumors with an average PMR of 4.3% (P=0.008). H3PH was significantly correlated with age (P=0.013), Gleason score (P=0.031) and the maximum involvement of the biopsy core (P=0.035).

Conclusions: H3PH is associated with clinicopathologic features. The data indicate that H3PH is more common in older higher risk patients. More research is needed to determine the role of this marker in optimizing management strategies in men with newly diagnosed prostate cancer.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Biopsy
  • DNA Methylation*
  • Homeodomain Proteins / genetics*
  • Homeodomain Proteins / metabolism
  • Humans
  • Male
  • Middle Aged
  • Promoter Regions, Genetic*
  • Prostate / metabolism*
  • Prostate / pathology
  • Prostatic Neoplasms / genetics*
  • Prostatic Neoplasms / metabolism
  • Prostatic Neoplasms / pathology
  • Transcription Factors

Substances

  • Homeodomain Proteins
  • Transcription Factors
  • HOXA4 protein, human