Parp-1 genetic ablation in Ela-myc mice unveils novel roles for Parp-1 in pancreatic cancer

J Pathol. 2014 Oct;234(2):214-27. doi: 10.1002/path.4384. Epub 2014 Aug 4.

Abstract

Pancreatic cancer has a dismal prognosis and is currently the fourth leading cause of cancer-related death in developed countries. The inhibition of poly(ADP-ribose) polymerase-1 (Parp-1), the major protein responsible for poly(ADP-ribosy)lation in response to DNA damage, has emerged as a promising treatment for several tumour types. Here we aimed to elucidate the involvement of Parp-1 in pancreatic tumour progression. We assessed Parp-1 protein expression in normal, preneoplastic and pancreatic tumour samples from humans and from K-Ras- and c-myc-driven mouse models of pancreatic cancer. Parp-1 was highly expressed in acinar cells in normal and cancer tissues. In contrast, ductal cells expressed very low or undetectable levels of this protein, both in a normal and in a tumour context. The Parp-1 expression pattern was similar in human and mouse samples, thereby validating the use of animal models for further studies. To determine the in vivo effects of Parp-1 depletion on pancreatic cancer progression, Ela-myc-driven pancreatic tumour development was analysed in a Parp-1 knock-out background. Loss of Parp-1 resulted in increased tumour necrosis and decreased proliferation, apoptosis and angiogenesis. Interestingly, Ela-myc:Parp-1(-/-) mice displayed fewer ductal tumours than their Ela-myc:Parp-1(+/+) counterparts, suggesting that Parp-1 participates in promoting acinar-to-ductal metaplasia, a key event in pancreatic cancer initiation. Moreover, impaired macrophage recruitment can be responsible for the ADM blockade found in the Ela-myc:Parp-1(-/-) mice. Finally, molecular analysis revealed that Parp-1 modulates ADM downstream of the Stat3-MMP7 axis and is also involved in transcriptional up-regulation of the MDM2, VEGFR1 and MMP28 cancer-related genes. In conclusion, the expression pattern of Parp-1 in normal and cancer tissue and the in vivo functional effects of Parp-1 depletion point to a novel role for this protein in pancreatic carcinogenesis and shed light into the clinical use of Parp-1 inhibitors.

Keywords: PDA; Parp-1; acinar-to-ductal metaplasia; apoptosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Animals
  • Apoptosis / genetics
  • Disease Models, Animal
  • Female
  • Gene Expression Regulation, Neoplastic
  • Genes, ras / physiology
  • Humans
  • Male
  • Mice
  • Mice, Knockout
  • Middle Aged
  • Pancreatic Neoplasms / genetics*
  • Pancreatic Neoplasms / metabolism
  • Pancreatic Neoplasms / pathology
  • Poly (ADP-Ribose) Polymerase-1
  • Poly(ADP-ribose) Polymerases / genetics*
  • Proto-Oncogene Proteins c-myc / metabolism*

Substances

  • Proto-Oncogene Proteins c-myc
  • PARP1 protein, human
  • Parp1 protein, rat
  • Poly (ADP-Ribose) Polymerase-1
  • Poly(ADP-ribose) Polymerases