RIP3 is downregulated in human myeloid leukemia cells and modulates apoptosis and caspase-mediated p65/RelA cleavage

Cell Death Dis. 2014 Aug 21;5(8):e1384. doi: 10.1038/cddis.2014.347.

Abstract

The receptor-interacting protein kinase 3 (RIP3) associates with RIP1 in a necrosome complex that can induce necroptosis, apoptosis, or cell proliferation. We analyzed the expression of RIP1 and RIP3 in CD34+ leukemia cells from a cohort of patients with acute myeloid leukemia (AML) and CD34+ cells from healthy donors. RIP3 expression was significantly reduced in most AML samples, whereas the expression of RIP1 did not differ significantly. When re-expressed in the mouse DA1-3b leukemia cell line, RIP3 induced apoptosis and necroptosis in the presence of caspase inhibitors. Transfection of RIP3 in the WEHI-3b leukemia cell line or in the mouse embryonic fibroblasts also resulted in increased cell death. Surprisingly, re-expression of a RIP3 mutant with an inactive kinase domain (RIP3-kinase dead (RIP3-KD)) induced significantly more and earlier apoptosis than wild-type RIP3 (RIP3-WT), indicating that the RIP3 kinase domain is an essential regulator of apoptosis/necroptosis in leukemia cells. The induced in vivo expression of RIP3-KD but not RIP3-WT prolonged the survival of mice injected with leukemia cells. The expression of RIP3-KD induced p65/RelA nuclear factor-κB (NF-κB) subunit caspase-dependent cleavage, and a non-cleavable p65/RelA D361E mutant rescued these cells from apoptosis. p65/RelA cleavage appears to be at least partially mediated by caspase-6. These data indicate that RIP3 silencing in leukemia cells results in suppression of the complex regulation of the apoptosis/necroptosis switch and NF-κB activity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Amino Acid Sequence
  • Animals
  • Apoptosis / drug effects
  • Caspase 6 / metabolism
  • Caspase Inhibitors / pharmacology
  • Caspases / chemistry
  • Caspases / metabolism*
  • Cell Line
  • Female
  • Humans
  • Leukemia, Myeloid, Acute / metabolism
  • Leukemia, Myeloid, Acute / pathology*
  • Male
  • Mice
  • Middle Aged
  • Molecular Sequence Data
  • NF-kappa B / metabolism
  • Receptor-Interacting Protein Serine-Threonine Kinases / chemistry
  • Receptor-Interacting Protein Serine-Threonine Kinases / genetics
  • Receptor-Interacting Protein Serine-Threonine Kinases / metabolism*
  • Transcription Factor RelA / metabolism*
  • Tumor Cells, Cultured

Substances

  • Caspase Inhibitors
  • NF-kappa B
  • Transcription Factor RelA
  • RIPK3 protein, human
  • Receptor-Interacting Protein Serine-Threonine Kinases
  • Caspase 6
  • Caspases