DNA damage-induced S and G2/M cell cycle arrest requires mTORC2-dependent regulation of Chk1

Oncotarget. 2015 Jan 1;6(1):427-40. doi: 10.18632/oncotarget.2813.

Abstract

mTOR signalling is commonly dysregulated in cancer. Concordantly, mTOR inhibitors have demonstrated efficacy in a subset of tumors and are in clinical trials as combination therapies. Although mTOR is associated with promoting cell survival after DNA damage, the exact mechanisms are not well understood. Moreover, since mTOR exists as two complexes, mTORC1 and mTORC2, the role of mTORC2 in cancer and in the DNA damage response is less well explored. Here, we report that mTOR protein levels and kinase activity are transiently increased by DNA damage in an ATM and ATR-dependent manner. We show that inactivation of mTOR with siRNA or pharmacological inhibition of mTORC1/2 kinase prevents etoposide-induced S and G2/M cell cycle arrest. Further results show that Chk1, a key regulator of the cell cycle arrest, is important for this since ablation of mTOR prevents DNA damage-induced Chk1 phosphorylation and decreases Chk1 protein production. Furthermore, mTORC2 was essential and mTORC1 dispensable, for this role. Importantly, we show that mTORC1/2 inhibition sensitizes breast cancer cells to chemotherapy. Taken together, these results suggest that breast cancer cells may rely on mTORC2-Chk1 pathway for survival and provide evidence that mTOR kinase inhibitors may overcome resistance to DNA-damage based therapies in breast cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Blotting, Western
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology*
  • Cell Cycle Checkpoints / physiology
  • Cell Line
  • Cell Survival / physiology*
  • Checkpoint Kinase 1
  • DNA Damage / physiology*
  • Flow Cytometry
  • G2 Phase Cell Cycle Checkpoints / physiology
  • Gene Expression Regulation, Neoplastic / physiology
  • Gene Knockdown Techniques
  • Humans
  • Mechanistic Target of Rapamycin Complex 2
  • Multiprotein Complexes / metabolism*
  • Protein Kinases / metabolism*
  • RNA, Small Interfering / genetics
  • Real-Time Polymerase Chain Reaction
  • S Phase / physiology
  • TOR Serine-Threonine Kinases / metabolism*
  • Transfection

Substances

  • Multiprotein Complexes
  • RNA, Small Interfering
  • Protein Kinases
  • CHEK1 protein, human
  • Checkpoint Kinase 1
  • Mechanistic Target of Rapamycin Complex 2
  • TOR Serine-Threonine Kinases