Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system

Stem Cells Dev. 2015 May 1;24(9):1053-65. doi: 10.1089/scd.2014.0347. Epub 2015 Feb 5.

Abstract

The generation of beta-thalassemia (β-Thal) patient-specific induced pluripotent stem cells (iPSCs), subsequent homologous recombination-based gene correction of disease-causing mutations/deletions in the β-globin gene (HBB), and their derived hematopoietic stem cell (HSC) transplantation offers an ideal therapeutic solution for treating this disease. However, the hematopoietic differentiation efficiency of gene-corrected β-Thal iPSCs has not been well evaluated in the previous studies. In this study, we used the latest gene-editing tool, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), to correct β-Thal iPSCs; gene-corrected cells exhibit normal karyotypes and full pluripotency as human embryonic stem cells (hESCs) showed no off-targeting effects. Then, we evaluated the differentiation efficiency of the gene-corrected β-Thal iPSCs. We found that during hematopoietic differentiation, gene-corrected β-Thal iPSCs showed an increased embryoid body ratio and various hematopoietic progenitor cell percentages. More importantly, the gene-corrected β-Thal iPSC lines restored HBB expression and reduced reactive oxygen species production compared with the uncorrected group. Our study suggested that hematopoietic differentiation efficiency of β-Thal iPSCs was greatly improved once corrected by the CRISPR/Cas9 system, and the information gained from our study would greatly promote the clinical application of β-Thal iPSC-derived HSCs in transplantation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • CRISPR-Cas Systems*
  • Cells, Cultured
  • Embryonic Stem Cells / cytology*
  • Embryonic Stem Cells / metabolism
  • Genetic Therapy / methods
  • Hematopoiesis*
  • Hematopoietic Stem Cells / cytology*
  • Hematopoietic Stem Cells / metabolism
  • Humans
  • Induced Pluripotent Stem Cells / cytology*
  • Induced Pluripotent Stem Cells / metabolism
  • beta-Globins / genetics*
  • beta-Globins / metabolism
  • beta-Thalassemia / genetics*
  • beta-Thalassemia / therapy

Substances

  • beta-Globins