A cysteine residue affects the conformational state and neuronal toxicity of mutant SOD1 in mice: relevance to the pathogenesis of ALS

Hum Mol Genet. 2015 Jun 15;24(12):3427-39. doi: 10.1093/hmg/ddv093. Epub 2015 Mar 11.

Abstract

We previously showed by in vitro experiments that the cysteine residue (Cys111) near the dimer interface is critical for monomerization and resultant aggregate formation of mutant Cu, Zn-superoxide dismutase (SOD1) protein, which is toxic to motor neurons in familial amyotrophic lateral sclerosis (ALS). To verify the importance of Cys111 in the mutant SOD1-associated ALS pathogenesis in vivo, we analyzed the disease phenotype of SOD1 transgenic mice harboring H46R mutation alone (H46R mice) or H46R/C111S double mutations (H46R/C111S mice). Behavioral, histological and biochemical analyses of the spinal cord showed that the onset and progression of the disease phenotype were delayed in H46R/C111S mice compared with H46R mice. We found that peroxidized Cys111 of H46R SOD1 plays a role in promoting formation of high molecular weight insoluble SOD1 species that is correlated with the progression of the motor neuron disease phenotype. These results support that Cys111 is a critical residue for the neuronal toxicity of mutant SOD1 in vivo, and the blockage of peroxidation of this residue in mutant SOD1 may constitute a future target for developing ALS treatment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Substitution
  • Amyotrophic Lateral Sclerosis / genetics*
  • Amyotrophic Lateral Sclerosis / metabolism
  • Amyotrophic Lateral Sclerosis / mortality
  • Animals
  • Cysteine*
  • Disease Models, Animal
  • Gene Dosage
  • Humans
  • Mice
  • Mice, Transgenic
  • Motor Neurons / metabolism*
  • Motor Neurons / pathology
  • Mutation*
  • Oxidation-Reduction
  • Phenotype
  • Physical Exertion
  • Protein Aggregation, Pathological
  • Protein Conformation*
  • Protein Folding
  • Spinal Cord / metabolism
  • Superoxide Dismutase / chemistry*
  • Superoxide Dismutase / genetics*
  • Superoxide Dismutase / metabolism
  • Superoxide Dismutase-1
  • Transgenes

Substances

  • SOD1 protein, human
  • Sod1 protein, mouse
  • Superoxide Dismutase
  • Superoxide Dismutase-1
  • Cysteine