Natural course and biology of CML

Ann Hematol. 2015 Apr:94 Suppl 2:S107-21. doi: 10.1007/s00277-015-2325-z. Epub 2015 Mar 27.

Abstract

Chronic myeloid leukaemia (CML) is a myeloproliferative disorder arising in the haemopoietic stem cell (HSC) compartment. This disease is characterised by a reciprocal t(9;22) chromosomal translocation, resulting in the formation of the Philadelphia (Ph) chromosome containing the BCR-ABL1 gene. As such, diagnosis and monitoring of disease involves detection of BCR-ABL1. It is the BCR-ABL1 protein, in particular its constitutively active tyrosine kinase activity, that forges the pathogenesis of CML. This aberrant kinase signalling activates downstream targets that reprogram the cell to cause uncontrolled proliferation and results in myeloid hyperplasia and 'indolent' symptoms of chronic phase (CP) CML. Without successful intervention, the disease will progress into blast crisis (BC), resembling an acute leukaemia. This advanced disease stage takes on an aggressive phenotype and is almost always fatal. The cell biology of CML is also centred on BCR-ABL1. The presence of BCR-ABL1 can explain virtually all the cellular features of the leukaemia (enhanced cell growth, inhibition of apoptosis, altered cell adhesion, growth factor independence, impaired genomic surveillance and differentiation). This article provides an overview of the clinical and cell biology of CML, and highlights key findings and unanswered questions essential for understanding this disease.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Disease Progression*
  • Humans
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / diagnosis
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / genetics
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / metabolism
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / physiopathology*
  • Mutation
  • Neoplasm Proteins / chemistry
  • Neoplasm Proteins / genetics
  • Neoplasm Proteins / metabolism
  • Prognosis

Substances

  • Neoplasm Proteins