MicroRNA-184 Deregulated by the MicroRNA-21 Promotes Tumor Malignancy and Poor Outcomes in Non-small Cell Lung Cancer via Targeting CDC25A and c-Myc

Ann Surg Oncol. 2015 Dec:22 Suppl 3:S1532-9. doi: 10.1245/s10434-015-4595-z. Epub 2015 May 20.

Abstract

Background: MicroRNA (miR)-184 has been reported to have a dual role in human cancers. However, the role of miR-184 in non-small cell lung cancer (NSCLC) remains unclear.

Methods: Wild-type or mutant CDC25A promoters were constructed by PCR and site-directed mutagenesis to verify whether miR-184 could inhibit CDC25A expression at post-transcription level. Boyden chamber assay was used to assess whether miR-184 could modulate cell invasiveness via targeting CDC25A and c-Myc. We utilized 124 tumors from NSCLC patients to determine miR-184, miR-21, PDCD4 mRNA, c-Myc mRNA, and CDC25A mRNA expression levels by means of real-time PCR analysis. The prognostic value of CDC25A, c-Myc, and miR-184 on overall survival (OS) and relapse-free survival (RFS) was evaluated by Kaplan-Meier and Cox regression analysis.

Results: MiR-184 suppressed CDC25A expression by enhancing the instability of its mRNA as a result of miR-184 binding to its coding region. An increase in CDC25A expression by means of a reduction in miR-184 promotes cell invasiveness. Moreover, a concomitant increase in CDC25A and c-Myc expression as a result of decreased miR-184 via the miR-21-mediated PDCD4 reduction is responsible for cell invasiveness. Among patients, miR-184 expression in lung tumors was found to correlate negatively with CDC25A mRNA, c-Myc mRNA, and miR-21 expression, but was positively related to PDCD4 mRNA expression. High-miR-184, High-CDC25A, or high-c-Myc mRNA tumors exhibited shorter OS and RFS periods than their counterparts. The worst OS and RFS were observed in low-miR-184/high-CDC25A/high-c-Myc tumors, followed by low-miR-184 /high-CDC25A, low-miR-184/high-c-Myc, high-c-Myc, and high-CDC25A tumors.

Conclusions: MiR-184 as a tumor suppressor miR inhibits cell proliferation and invasion capability via targeting CDC25A and c-Myc. Low miR-184 level may predict worse prognosis in NSCLC patients.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism*
  • Carcinoma, Non-Small-Cell Lung / genetics
  • Carcinoma, Non-Small-Cell Lung / metabolism
  • Carcinoma, Non-Small-Cell Lung / pathology*
  • Cell Movement
  • Cell Proliferation
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Immunoenzyme Techniques
  • Lung Neoplasms / genetics
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / pathology*
  • MicroRNAs / genetics*
  • Neoplasm Invasiveness
  • Neoplasm Staging
  • Prognosis
  • Proto-Oncogene Proteins c-myc / genetics
  • Proto-Oncogene Proteins c-myc / metabolism*
  • RNA, Messenger / genetics
  • Real-Time Polymerase Chain Reaction
  • Reverse Transcriptase Polymerase Chain Reaction
  • Survival Rate
  • Tumor Cells, Cultured
  • cdc25 Phosphatases / genetics
  • cdc25 Phosphatases / metabolism*

Substances

  • Biomarkers, Tumor
  • MIRN184 microRNA, human
  • MIRN21 microRNA, human
  • MicroRNAs
  • Proto-Oncogene Proteins c-myc
  • RNA, Messenger
  • CDC25A protein, human
  • cdc25 Phosphatases