Clinicopathological significance and potential drug target of RUNX3 in non-small cell lung cancer: a meta-analysis

Drug Des Devel Ther. 2015 Jun 3:9:2855-65. doi: 10.2147/DDDT.S76358. eCollection 2015.

Abstract

Background: Emerging evidence indicates that RUNX3 is a candidate tumor suppressor in several types of human tumors, including non-small cell lung cancer (NSCLC). However, the correlation between RUNX3 hypermethylation and clinicopathological characteristics of NSCLC remains unclear. Here, we conducted a systematic review and meta-analysis to quantitatively evaluate the effects of RUNX3 hypermethylation on the incidence of NSCLC and clinicopathological characteristics.

Methods: A detailed literature search was made using Medline, Embase and Web of Science for related research publications written in English. The methodological quality of the studies was evaluated. The data were extracted and assessed independently by two reviewers. Analysis of pooled data was performed. The odds ratio (OR) and hazard ratio were calculated and summarized.

Results: Final analysis of 911 NSCLC patients from 13 eligible studies was performed. We observed that RUNX3 hypermethylation was significantly higher in NSCLC than in normal lung tissue; the pooled OR from seven studies including 361 NSCLC and 345 normal lung tissue (OR 7.08, confidence interval 4.12-12.17, P<0.00001). RUNX3 hypermethylation may also be associated with pathological types. The pooled OR was obtained from eleven studies including 271 squamous cell carcinoma and 389 adenocarcinoma (OR 0.41, confidence interval 0.19-0.89, P=0.02), which indicated that RUNX3 hypermethylation is significantly higher in adenocarcinoma that in squamous cell carcinoma. We did not find that RUNX3 hypermethylation was correlated with clinical stage or differentiated status. However, NSCLC patients with RUNX3 hypermethylation had a lower survival rate than those without RUNX3 hypermethylation.

Conclusion: The results of this meta-analysis suggest that RUNX3 hypermethylation is associated with an increased risk and worse survival in NSCLC. RUNX3 hypermethylation, which induces inactivation of the RUNX3 gene, plays an important role in lung carcinogenesis and clinical outcome.

Keywords: RUNX3; hazard ratio; lung cancer; meta-analysis; methylation; odds ratio; tumor suppressor gene.

Publication types

  • Meta-Analysis
  • Systematic Review

MeSH terms

  • Adenocarcinoma / genetics
  • Adenocarcinoma / pathology
  • Carcinoma, Non-Small-Cell Lung / genetics*
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Carcinoma, Squamous Cell / genetics
  • Carcinoma, Squamous Cell / pathology
  • Core Binding Factor Alpha 3 Subunit / genetics*
  • DNA Methylation
  • Humans
  • Lung Neoplasms / genetics*
  • Lung Neoplasms / pathology
  • Neoplasm Staging
  • Risk
  • Survival Rate

Substances

  • Core Binding Factor Alpha 3 Subunit
  • Runx3 protein, human