BIM Gene Polymorphism Lowers the Efficacy of EGFR-TKIs in Advanced Nonsmall Cell Lung Cancer With Sensitive EGFR Mutations: A Systematic Review and Meta-Analysis

Medicine (Baltimore). 2015 Aug;94(33):e1263. doi: 10.1097/MD.0000000000001263.

Abstract

The strong association between bcl-2-like 11 (BIM) triggered apoptosis and the presence of epidermal growth factor receptor (EGFR) mutations has been proven in nonsmall cell lung cancer (NSCLC). However, the relationship between EGFR-tyrosine kinase inhibitor's (TKI's) efficacy and BIM polymorphism in NSCLC EGFR is still unclear.Electronic databases were searched for eligible literatures. Data on objective response rates (ORRs), disease control rates (DCRs), and progression-free survival (PFS) stratified by BIM polymorphism status were extracted and synthesized based on random-effect model. Subgroup and sensitivity analyses were conducted.A total of 6 studies that involved a total of 773 EGFR mutant advanced NSCLC patients after EGFR-TKI treatment were included. In overall, non-BIM polymorphism patients were associated with significant prolonged PFS (hazard ratio 0.63, 0.47-0.83, P = 0.001) compared to patients with BIM polymorphism. However, only marginal improvements without statistical significance in ORR (odds ratio [OR] 1.71, 0.91-3.24, P = 0.097) and DCR (OR 1.56, 0.85-2.89, P = 0.153) were observed. Subgroup analyses showed that the benefits of PFS in non-BIM polymorphism group were predominantly presented in pooled results of studies involving chemotherapy-naive and the others, and retrospective studies. Additionally, we failed to observe any significant benefit from patients without BIM polymorphism in every subgroup for ORR and DCR.For advanced NSCLC EGFR mutant patients, non-BIM polymorphism ones are associated with longer PFS than those with BIM polymorphism after EGFR-TKIs treatment. BIM polymorphism status should be considered an essential factor in studies regarding EGFR-targeted agents toward EGFR mutant patients.

Publication types

  • Meta-Analysis
  • Research Support, Non-U.S. Gov't
  • Systematic Review

MeSH terms

  • Apoptosis / drug effects
  • Apoptosis / genetics
  • Apoptosis Regulatory Proteins / genetics*
  • Bcl-2-Like Protein 11
  • Carcinoma, Non-Small-Cell Lung* / drug therapy
  • Carcinoma, Non-Small-Cell Lung* / genetics
  • Carcinoma, Non-Small-Cell Lung* / metabolism
  • Drug Resistance, Neoplasm / genetics
  • ErbB Receptors / antagonists & inhibitors
  • Genes, erbB-1 / genetics*
  • Humans
  • Membrane Proteins / genetics*
  • Mutation
  • Polymorphism, Genetic
  • Protein Kinase Inhibitors / pharmacology*
  • Proto-Oncogene Proteins / genetics*
  • Treatment Outcome

Substances

  • Apoptosis Regulatory Proteins
  • BCL2L11 protein, human
  • Bcl-2-Like Protein 11
  • Membrane Proteins
  • Protein Kinase Inhibitors
  • Proto-Oncogene Proteins
  • ErbB Receptors