TRPM2, a Susceptibility Gene for Bipolar Disorder, Regulates Glycogen Synthase Kinase-3 Activity in the Brain

J Neurosci. 2015 Aug 26;35(34):11811-23. doi: 10.1523/JNEUROSCI.5251-14.2015.

Abstract

Bipolar disorder (BD) is a psychiatric disease that causes mood swings between manic and depressed states. Although genetic linkage studies have shown an association between BD and TRPM2, a Ca(2+)-permeable cation channel, the nature of this association is unknown. Here, we show that D543E, a mutation of Trpm2 that is frequently found in BD patients, induces loss of function. Trpm2-deficient mice exhibited BD-related behavior such as increased anxiety and decreased social responses, along with disrupted EEG functional connectivity. Moreover, the administration of amphetamine in wild-type mice evoked a notable increase in open-field activity that was reversed by the administration of lithium. However, the anti-manic action of lithium was not observed in the Trpm2(-/-) mice. The brains of Trpm2(-/-) mice showed a marked increase in phosphorylated glycogen synthase kinase-3 (GSK-3), a key element in BD-like behavior and a target of lithium. In contrast, activation of TRPM2 induced the dephosphorylation of GSK-3 via calcineurin, a Ca(2+)-dependent phosphatase. Importantly, the overexpression of the D543E mutant failed to induce the dephosphorylation of GSK-3. Therefore, we conclude that the genetic dysfunction of Trpm2 causes uncontrolled phosphorylation of GSK-3, which may lead to the pathology of BD. Our findings explain the long-sought etiologic mechanism underlying the genetic link between Trpm2 mutation and BD.

Significance statement: Bipolar disorder (BD) is a mental disorder that causes changes in mood and the etiology is still unknown. TRPM2 is highly associated with BD; however, its involvement in the etiology of BD is still unknown. We show here that TRPM2 plays a central role in causing the pathology of BD. We found that D543E, a mutation of Trpm2 frequently found in BD patients, induces the loss of function. Trpm2-deficient mice exhibited mood disturbances and impairments in social cognition. TRPM2 actively regulates the phosphorylation of GSK-3, which is a main target of lithium, a primary medicine for treating BD. Therefore, abnormal regulation of GSK-3 by hypoactive TRPM2 mutants accounts for the pathology of BD, providing the possible link between BD and TRPM2.

Keywords: TRPM2; bipolar disorder; calcineurin; glycogen synthase kinase-3; mutation; susceptibilty.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bipolar Disorder / genetics
  • Bipolar Disorder / metabolism*
  • Brain / metabolism*
  • Cell Line, Tumor
  • Enzyme Activation / physiology
  • Genetic Predisposition to Disease* / genetics
  • Glycogen Synthase Kinase 3 / genetics
  • Glycogen Synthase Kinase 3 / metabolism*
  • HEK293 Cells
  • Humans
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • TRPM Cation Channels / genetics
  • TRPM Cation Channels / physiology*

Substances

  • TRPM Cation Channels
  • TRPM2 protein, human
  • Glycogen Synthase Kinase 3