RAS signaling and anti-RAS therapy: lessons learned from genetically engineered mouse models, human cancer cells, and patient-related studies

Acta Biochim Biophys Sin (Shanghai). 2016 Jan;48(1):27-38. doi: 10.1093/abbs/gmv090. Epub 2015 Sep 7.

Abstract

Activating mutations of oncogenic RAS genes are frequently detected in human cancers. The studies in genetically engineered mouse models (GEMMs) reveal that Kras-activating mutations predispose mice to early onset tumors in the lung, pancreas, and gastrointestinal tract. Nevertheless, most of these tumors do not have metastatic phenotypes. Metastasis occurs when tumors acquire additional genetic changes in other cancer driver genes. Studies on clinical specimens also demonstrated that KRAS mutations are present in premalignant tissues and that most of KRAS mutant human cancers have co-mutations in other cancer driver genes, including TP53, STK11, CDKN2A, and KMT2C in lung cancer; APC, TP53, and PIK3CA in colon cancer; and TP53, CDKN2A, SMAD4, and MED12 in pancreatic cancer. Extensive efforts have been devoted to develop therapeutic agents that target enzymes involved in RAS posttranslational modifications, that inhibit downstream effectors of RAS signaling pathways, and that kill RAS mutant cancer cells through synthetic lethality. Recent clinical studies have revealed that sorafenib, a pan-RAF and VEGFR inhibitor, has impressive benefits for KRAS mutant lung cancer patients. Combination therapy of MEK inhibitors with either docetaxel, AKT inhibitors, or PI3K inhibitors also led to improved clinical responses in some KRAS mutant cancer patients. This review discusses knowledge gained from GEMMs, human cancer cells, and patient-related studies on RAS-mediated tumorigenesis and anti-RAS therapy. Emerging evidence demonstrates that RAS mutant cancers are heterogeneous because of the presence of different mutant alleles and/or co-mutations in other cancer driver genes. Effective subclassifications of RAS mutant cancers may be necessary to improve patients' outcomes through personalized precision medicine.

Keywords: RAS genes; adenocarcinoma; animal models; antineoplastic agents; clinical trial; neoplasms.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Adenocarcinoma / genetics
  • Alleles
  • Animals
  • Cell Line, Tumor
  • Clinical Trials as Topic
  • Gene Expression Regulation, Neoplastic
  • Genetic Engineering / methods*
  • Humans
  • Mice
  • Mutation
  • Neoplasm Metastasis
  • Neoplasms / genetics*
  • Neoplasms / metabolism*
  • Phenotype
  • Phosphatidylinositol 3-Kinases / metabolism
  • Precision Medicine
  • Signal Transduction
  • ras Proteins / metabolism*

Substances

  • Phosphatidylinositol 3-Kinases
  • ras Proteins