Melatonin set out to ER stress signaling thwarts epithelial mesenchymal transition and peritoneal dissemination via calpain-mediated C/EBPβ and NFκB cleavage

J Pineal Res. 2016 Mar;60(2):142-54. doi: 10.1111/jpi.12295. Epub 2015 Dec 16.

Abstract

Peritoneal dissemination of tumor has high mortality and is associated with the loss of epithelial features, acquisition of motile mesenchymal morphology characteristics, and invasive properties by tumor cells. Melatonin is an endogenously produced molecule in all plant species that is known to exert antitumor activity, but to date, its underlying mechanisms and antiperitoneal metastasis efficacy is not well defined. This study determined the antiperitoneal dissemination potential of melatonin in vivo and assessed its association with the inhibition of epithelial-to-mesenchymal transition (EMT) signaling mechanism by endoplasmic reticulum (ER) stress, which may be a major molecular mechanism of melatonin against cancer. The results demonstrate that melatonin inhibited peritoneal metastasis in vivo and activated ER stress in Cignal ERSE Reporter Assay, organelle structure in transmission electron microscopy images, calpain activity, and protein biomarkers like p-elf2α. Moreover, the overexpression of transcription factor C/EBPβ in gastric cancer interacted with NFκB and further regulates COX-2 expression. These were dissociated and downregulated by melatonin, as proven by immunofluorescence imaging, immunoprecipitation, EMSA, and ChIP assay. Melatonin or gene silencing of C/EBPβ decreased the EMT protein markers (E-cadherin, Snail, and Slug) and Wnt/beta-catenin activity by Topflash activity, and increased ER stress markers. In an animal study, the results of melatonin therapy were consistent with those of in vitro findings and attenuated systemic proangiogenesis factor production. In conclusion, C/EBPβ and NFκB inhibition by melatonin may impede both gastric tumor growth and peritoneal dissemination by inducing ER stress and inhibiting EMT.

Keywords: C/EBPβ; calpain; endoplasmic reticulum stress; epithelial-to-mesenchymal transition; melatonin; peritoneal dissemination.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CCAAT-Enhancer-Binding Protein-beta / genetics
  • CCAAT-Enhancer-Binding Protein-beta / metabolism*
  • Calpain / genetics
  • Calpain / metabolism*
  • Cell Line, Tumor
  • Endoplasmic Reticulum Stress / drug effects*
  • Epithelial-Mesenchymal Transition / drug effects*
  • Gene Silencing
  • Humans
  • Melatonin / pharmacology*
  • Mice
  • NF-kappa B / genetics
  • NF-kappa B / metabolism*
  • Neoplasm Proteins / genetics
  • Neoplasm Proteins / metabolism*
  • Peritoneal Neoplasms / drug therapy*
  • Peritoneal Neoplasms / genetics
  • Peritoneal Neoplasms / metabolism
  • Peritoneal Neoplasms / pathology
  • Peritoneal Neoplasms / secondary
  • Proteolysis / drug effects*
  • Signal Transduction / drug effects*
  • Stomach Neoplasms / drug therapy*
  • Stomach Neoplasms / genetics
  • Stomach Neoplasms / metabolism
  • Stomach Neoplasms / pathology

Substances

  • CCAAT-Enhancer-Binding Protein-beta
  • CEBPB protein, human
  • NF-kappa B
  • Neoplasm Proteins
  • Calpain
  • Melatonin