Multidrug resistance protein 1 reduces the aggregation of mutant huntingtin in neuronal cells derived from the Huntington's disease R6/2 model

Sci Rep. 2015 Nov 20:5:16887. doi: 10.1038/srep16887.

Abstract

Mutant huntingtin (mHtt) aggregation in the nucleus is the most readily apparent phenotype and cause of neuronal death in Huntington's disease (HD). Inhibiting mHtt aggregation reduces cell death in the brain and is thus a promising therapeutic approach. The results of the present study demonstrated that mHtt aggregation in the nucleus was altered by the activity of multidrug resistance protein 1 (MDR1), which was experimentally modulated by verapamil, siRNA and an expression vector. MDR1 detoxifies drugs and metabolites through its excretory functions in the membrane compartment, thereby protecting cells against death or senescence. When they were treated with verapamil, R6/2 mice showed a progressive decline in rotarod performance and increased mHtt aggregation in the brain. Using neuronal stem cells from R6/2 mice, we developed an in vitro HD model to test mHtt accumulation in the nuclei of neurons. When MDR1 activity in cells was decreased by verapamil or siRNA, mHtt aggregation in the nuclei increased, whereas the induction of MDR1 resulted in a decrease in mHtt aggregation. Thus, our data provide evidence that MDR1 plays an important role in the clearance of mHtt aggregation and may thus be a potential target for improving the survival of neurons in Huntington's disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / genetics
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / metabolism*
  • Animals
  • Blotting, Western
  • Cells, Cultured
  • Disease Models, Animal
  • Female
  • Humans
  • Huntingtin Protein
  • Huntington Disease / drug therapy
  • Huntington Disease / genetics
  • Huntington Disease / metabolism*
  • Immunohistochemistry
  • Male
  • Mice, Transgenic
  • Motor Activity / drug effects
  • Motor Activity / genetics
  • Mutation
  • Nerve Tissue Proteins / genetics
  • Nerve Tissue Proteins / metabolism*
  • Neurons / drug effects
  • Neurons / metabolism*
  • Nucleic Acid Synthesis Inhibitors / pharmacology
  • Protein Aggregation, Pathological / genetics
  • RNA Interference
  • Reverse Transcriptase Polymerase Chain Reaction
  • Rifampin / pharmacology
  • Vasodilator Agents / pharmacology
  • Verapamil / pharmacology

Substances

  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • HTT protein, human
  • Huntingtin Protein
  • Nerve Tissue Proteins
  • Nucleic Acid Synthesis Inhibitors
  • Vasodilator Agents
  • Verapamil
  • Rifampin