Meta-Analysis of Transcriptome Data Related to Hippocampus Biopsies and iPSC-Derived Neuronal Cells from Alzheimer's Disease Patients Reveals an Association with FOXA1 and FOXA2 Gene Regulatory Networks

J Alzheimers Dis. 2016;50(4):1065-82. doi: 10.3233/JAD-150733.

Abstract

Although the incidence of Alzheimer's disease (AD) is continuously increasing in the aging population worldwide, effective therapies are not available. The interplay between causative genetic and environmental factors is partially understood. Meta-analyses have been performed on aspects such as polymorphisms, cytokines, and cognitive training. Here, we propose a meta-analysis approach based on hierarchical clustering analysis of a reliable training set of hippocampus biopsies, which is condensed to a gene expression signature. This gene expression signature was applied to various test sets of brain biopsies and iPSC-derived neuronal cell models to demonstrate its ability to distinguish AD samples from control. Thus, our identified AD-gene signature may form the basis for determination of biomarkers that are urgently needed to overcome current diagnostic shortfalls. Intriguingly, the well-described AD-related genes APP and APOE are not within the signature because their gene expression profiles show a lower correlation to the disease phenotype than genes from the signature. This is in line with the differing characteristics of the disease as early-/late-onset or with/without genetic predisposition. To investigate the gene signature's systemic role(s), signaling pathways, gene ontologies, and transcription factors were analyzed which revealed over-representation of response to stress, regulation of cellular metabolic processes, and reactive oxygen species. Additionally, our results clearly point to an important role of FOXA1 and FOXA2 gene regulatory networks in the etiology of AD. This finding is in corroboration with the recently reported major role of the dopaminergic system in the development of AD and its regulation by FOXA1 and FOXA2.

Keywords: Alzheimer’s disease; energy metabolism; forkhead box proteins; gene expression, induced pluripotent stem cells; meta-analysis; microarray analysis; transcription factors.

Publication types

  • Meta-Analysis
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease / genetics
  • Alzheimer Disease / metabolism*
  • Alzheimer Disease / pathology
  • Biopsy
  • Cells, Cultured
  • Gene Regulatory Networks
  • Hepatocyte Nuclear Factor 3-alpha / genetics
  • Hepatocyte Nuclear Factor 3-alpha / metabolism*
  • Hepatocyte Nuclear Factor 3-beta / genetics
  • Hepatocyte Nuclear Factor 3-beta / metabolism*
  • Hippocampus / metabolism*
  • Hippocampus / pathology
  • Humans
  • Induced Pluripotent Stem Cells / metabolism*
  • Transcriptome*

Substances

  • FOXA1 protein, human
  • FOXA2 protein, human
  • Hepatocyte Nuclear Factor 3-alpha
  • Hepatocyte Nuclear Factor 3-beta