Structural and Functional Insights on an Uncharacterized Aγ-Globin-Gene Polymorphism Present in Four β0-Thalassemia Families with High Fetal Hemoglobin Levels

Mol Diagn Ther. 2016 Apr;20(2):161-73. doi: 10.1007/s40291-016-0187-2.

Abstract

Introduction: Several DNA polymorphisms have been associated with high production of fetal hemoglobin (HbF), although the molecular basis is not completely understood. In order to identify and characterize novel HbF-associated elements, we focused on five probands and their four families (from Egypt, Iraq and Iran) with thalassemia major (either β(0)-IVSII-1 or β(0)-IVSI-1) and unusual HbF elevation (>98 %), congenital or acquired after rejection of bone marrow transplantation, suggesting an anticipated favorable genetic background to high HbF expression.

Methods: Patient recruitment, genomic DNA sequencing, western blotting, electrophoretic mobility shift assays, surface plasmon resonance (SPR) biospecific interaction analysis, bioinformatics analyses based on docking experiments.

Results: A polymorphism of the Aγ-globin gene is here studied in four families with β(0)-thalassemia (β(0)-IVSII-1 and β(0)-IVSI-1) and expressing unusual high HbF levels, congenital or acquired after rejection of bone marrow transplantation. This (G→A) polymorphism is present at position +25 of the Aγ-globin genes, corresponding to a 5'-UTR region of the Aγ-globin mRNA and, when present, is physically linked in chromosomes 11 of all the familiar members studied to the XmnI polymorphism and to the β(0)-thalassemia mutations. The region corresponding to the +25(G→A) polymorphism of the Aγ-globin gene belongs to a sequence recognized by DNA-binding protein complexes, including LYAR (Ly-1 antibody reactive clone), a zinc-finger transcription factor previously proposed to be involved in down-regulation of the expression of γ-globin genes in erythroid cells.

Conclusion: We found a novel polymorphism of the Aγ-globin gene in four families with β(0)-thalassemia and high levels of HbF expression. Additionally, we report evidence suggesting that the Aγ-globin gene +25(G→A) polymorphism decreases the efficiency of the interaction between this sequence and specific DNA binding protein complexes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Child
  • Child, Preschool
  • Chromosomes, Human, Pair 11 / genetics
  • DNA-Binding Proteins / metabolism
  • Female
  • Fetal Hemoglobin / genetics
  • Fetal Hemoglobin / metabolism*
  • Humans
  • K562 Cells
  • Male
  • Pedigree
  • Polymorphism, Single Nucleotide*
  • beta-Thalassemia / genetics*
  • beta-Thalassemia / metabolism
  • gamma-Globins / chemistry
  • gamma-Globins / genetics*
  • gamma-Globins / metabolism

Substances

  • DNA-Binding Proteins
  • gamma-Globins
  • Fetal Hemoglobin