miR-3188 regulates nasopharyngeal carcinoma proliferation and chemosensitivity through a FOXO1-modulated positive feedback loop with mTOR-p-PI3K/AKT-c-JUN

Nat Commun. 2016 Apr 20:7:11309. doi: 10.1038/ncomms11309.

Abstract

The biological role of miR-3188 has not yet been reported in the context of cancer. In this study, we observe that miR-3188 not only reduces cell-cycle transition and proliferation, but also significantly prolongs the survival time of tumour-bearing mice as well as sensitizes cells to 5-FU. Mechanistic analyses indicate that miR-3188 directly targets mTOR to inactivate p-PI3K/p-AKT/c-JUN and induces its own expression. This feedback loop further suppresses cell-cycle signalling through the p-PI3K/p-AKT/p-mTOR pathway. Interestingly, we also observe that miR-3188 direct targeting of mTOR is mediated by FOXO1 suppression of p-PI3K/p-AKT/c-JUN signalling. In clinical samples, reduced miR-3188 is an unfavourable factor and negatively correlates with mTOR and c-JUN levels but positively correlates with FOXO1 expression. Our studies demonstrate that as a tumour suppressor, miR-3188 directly targets mTOR to stimulate its own expression and participates in FOXO1-mediated repression of cell growth, tumorigenesis and NPC chemotherapy resistance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Animals
  • Carcinoma
  • Cell Line, Tumor
  • Cell Transformation, Neoplastic / genetics
  • Cell Transformation, Neoplastic / metabolism
  • Cell Transformation, Neoplastic / pathology
  • Drug Resistance, Neoplasm / genetics
  • Feedback, Physiological
  • Female
  • Forkhead Box Protein O1
  • Forkhead Transcription Factors / genetics*
  • Forkhead Transcription Factors / metabolism
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • JNK Mitogen-Activated Protein Kinases / genetics*
  • JNK Mitogen-Activated Protein Kinases / metabolism
  • Male
  • Mice
  • MicroRNAs / genetics*
  • MicroRNAs / metabolism
  • Middle Aged
  • Nasopharyngeal Carcinoma
  • Nasopharyngeal Neoplasms / diagnosis
  • Nasopharyngeal Neoplasms / genetics*
  • Nasopharyngeal Neoplasms / metabolism
  • Nasopharyngeal Neoplasms / pathology
  • Neoplasm Staging
  • Neoplasm Transplantation
  • Phosphatidylinositol 3-Kinases / genetics*
  • Phosphatidylinositol 3-Kinases / metabolism
  • Prognosis
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction
  • Survival Analysis
  • TOR Serine-Threonine Kinases / genetics*
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • FOXO1 protein, human
  • Forkhead Box Protein O1
  • Forkhead Transcription Factors
  • MIRN3189 microRNA, human
  • MicroRNAs
  • MTOR protein, human
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases
  • JNK Mitogen-Activated Protein Kinases