Definition of the human raf amino-terminal regulatory region by deletion mutagenesis

Mol Cell Biol. 1989 Feb;9(2):639-47. doi: 10.1128/mcb.9.2.639-647.1989.

Abstract

Activation of transforming potential of the cellular raf gene has uniformly been associated with the deletion of amino-terminal coding sequences. In order to determine whether 5' truncation alone could activate cellular raf, we constructed 21 human c-raf-1 cDNAs with variable BAL 31-generated deletions distal to a Moloney murine sarcoma virus long terminal repeat and a consensus translation initiation sequence. The deletions ranged from 136 to 1,399 nucleotides of coding sequence and shortened the 648-amino-acid raf protein by 44 to 465 amino acids. The full-length c-raf-1 cDNA was nontransforming upon transfection of NIH 3T3 cells, as were four mutants with deletions of 142 or fewer amino acids. Seven of nine mutants with deletions of 154 to 273 amino acids induced transformation with efficiencies ranging from 0.25 to 70 foci per micrograms of DNA. Mutants with deletions of 303 to 324 amino acids displayed high transforming activities (comparable with that of v-raf), with a peak activity of 2,400 foci per microgram of DNA when 305 amino acids were deleted. Deletions of greater than 383 amino acids, extending into the raf kinase domain, lacked transforming activity. Northern (RNA) blotting and immunoprecipitation assays indicated that transfected NIH cells expressed raf RNAs and proteins of the expected sizes. Thus, 5' truncation alone can activate raf transforming potential, with a sharp peak of activation around amino acid 300. Analysis of three raf genes previously detected by transfection of tumor DNAs indicated that these genes were activated by recombination in raf intron 7 and encoded fusion proteins containing amino-terminal non-raf sequences. The extend of deletion of raf sequences in these recombinant genes corresponded to BAL 31 mutants which did not display high transforming activity, suggesting that the fused non-raf coding sequences may also contribute to biological activity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Chromosome Deletion
  • DNA / genetics
  • DNA Mutational Analysis
  • Gene Expression Regulation
  • Genes, Regulator*
  • Humans
  • Introns
  • Oncogenes*
  • Plasmids
  • Promoter Regions, Genetic
  • Protein Biosynthesis
  • Recombinant Fusion Proteins / genetics
  • Repetitive Sequences, Nucleic Acid
  • Transcription, Genetic
  • Transformation, Genetic

Substances

  • Recombinant Fusion Proteins
  • DNA