MicroRNA-29a contributes to drug-resistance of breast cancer cells to adriamycin through PTEN/AKT/GSK3β signaling pathway

Gene. 2016 Nov 15;593(1):84-90. doi: 10.1016/j.gene.2016.08.016. Epub 2016 Aug 11.

Abstract

Purpose: Acquisition of resistance to adriamycin (ADR) during the treatment of breast cancer is still a major clinical obstacle. MicroRNAs (miRNAs) are a class of short noncoding RNAs which associate with cancer chemoresistance through regulating gene expression by targeting mRNAs. Our previous microarray found that miR-29a may strongly confer the ADR resistance of breast cancer cells. Here, we aim to explore the possible mechanism by which miR-29a affects sensitivity to ADR.

Methods: ADR-resistant MCF-7 breast cancer cell subline (MCF-7/ADR) was successfully established in vitro through a stepwise increase of ADR concentrations in the culture based on parental MCF-7 cell lines (MCF-7/S). We used TargetScan (a wide use of target prediction algorithms) in conjunction with pathway enrichment analyses to predict the mRNAs that were most likely to involve in miR-29a-mediated drug resistance in cancers. We confirmed the effects of miR-29a-mediated ADR resistance through MTT and apoptosis assays, and further investigated the activities of two target genes, PTEN and GSK3β, by RT-qPCR analyses and western blot assays.

Results: The expression level of miR-29a in MCF-7/ADR cells was remarkablely higher than in MCF-7/S cells. Further MTT and apoptosis assays revealed that transfection of miR-29a inhibitors into MCF-7/ADR cells resulted in prominent reduction of the drug resistance, in contrast, transfection of miR-29a mimics into MCF-7/S cells obviously increased their drug resistance. Through pathway enrichment analyses for miR-29a, we found that PTEN/AKT/GSK3β signaling pathway may be of importance. RT-qPCR and Western blot results showed that downregulation of miR-29a expression in MCF-7/ADR cells increased PTEN expression levels, resulting in decreased phospho-Akt (p-Akt) and phospho-GSK3β (p-GSK3β) expression. Conversely, upregulation of miR-29a expression in MCF-7/S cells is associated with decreasing PTEN expression and increasing p-Akt and p-GSK3β expression.

Conclusions: PTEN and GSK3β are targeted by miR-29a, and miR-29a may contribute to ADR resistance through inhibition of the PTEN/AKT/GSK3β pathway in breast cancer cells. Thus, miR-29a may be a potential target for the patients who acquired ADR-resistance during the treatment of breast cancer.

Keywords: Breast cancer; Drug-resistance; GSK3β; PTEN; miR-29a.

MeSH terms

  • Apoptosis / drug effects
  • Apoptosis / genetics
  • Breast Neoplasms / drug therapy
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism*
  • Breast Neoplasms / pathology
  • Doxorubicin / pharmacology*
  • Drug Resistance, Neoplasm / drug effects*
  • Drug Resistance, Neoplasm / genetics
  • Female
  • Glycogen Synthase Kinase 3 beta / genetics
  • Glycogen Synthase Kinase 3 beta / metabolism*
  • Humans
  • MCF-7 Cells
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • PTEN Phosphohydrolase / genetics
  • PTEN Phosphohydrolase / metabolism*
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism*
  • RNA, Neoplasm / genetics
  • RNA, Neoplasm / metabolism*
  • Signal Transduction / drug effects*
  • Signal Transduction / genetics

Substances

  • MIRN29a microRNA, human
  • MicroRNAs
  • RNA, Neoplasm
  • Doxorubicin
  • GSK3B protein, human
  • Glycogen Synthase Kinase 3 beta
  • Proto-Oncogene Proteins c-akt
  • PTEN Phosphohydrolase
  • PTEN protein, human