Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6

PLoS One. 2016 Aug 29;11(8):e0162042. doi: 10.1371/journal.pone.0162042. eCollection 2016.

Abstract

Many daily life activities demand precise integration of spatial and temporal information of sensory inputs followed by appropriate motor actions. This type of integration is carried out in part by the cerebellum, which has been postulated to play a central role in learning and timing of movements. Cerebellar damage due to atrophy or lesions may compromise forward-model processing, in which both spatial and temporal cues are used to achieve prediction for future motor states. In the present study we sought to further investigate the cerebellar contribution to predictive and reactive motor timing, as well as to learning of sequential order and temporal intervals in these tasks. We tested patients with spinocerebellar ataxia type 6 (SCA6) and healthy controls for two related motor tasks; one requiring spatio-temporal prediction of dynamic visual stimuli and another one requiring reactive timing only. We found that healthy controls established spatio-temporal prediction in their responses with high temporal precision, which was absent in the cerebellar patients. SCA6 patients showed lower predictive motor timing, coinciding with a reduced number of correct responses during the 'anticipatory' period on the task. Moreover, on the task utilizing reactive motor timing functions, control participants showed both sequence order and temporal interval learning, whereas patients only showed sequence order learning. These results suggest that SCA6 affects predictive motor timing and temporal interval learning. Our results support and highlight cerebellar contribution to timing and argue for cerebellar engagement during spatio-temporal prediction of upcoming events.

Publication types

  • Controlled Clinical Trial

MeSH terms

  • Aged
  • Aged, 80 and over
  • Cerebellum / physiology
  • Female
  • Humans
  • Learning / physiology
  • Male
  • Middle Aged
  • Photic Stimulation
  • Psychomotor Performance / physiology*
  • Spinocerebellar Ataxias / physiopathology*
  • Time Perception / physiology

Grants and funding

This study was supported by the Dutch Organization for Medical Sciences and Life Sciences (C.I.D.Z.); Programmes for Excellence ’Brain & Cognition: an Integrated Approach’ (433-09-245) (Y.D.v.d.W and C.I.D.Z.) and VIDI (452-14-015) (V.G.) of the Netherlands Organization for Scientific Research; and the ERC-advanced (CCC), ERC-PoC (BrainFrame), CEREBNET and C7 programs of the European Community (C.I.D.Z.).