Involvement of Histone Lysine Methylation in p21 Gene Expression in Rat Kidney In Vivo and Rat Mesangial Cells In Vitro under Diabetic Conditions

J Diabetes Res. 2016:2016:3853242. doi: 10.1155/2016/3853242. Epub 2016 Aug 29.

Abstract

Diabetic nephropathy (DN), a common complication associated with type 1 and type 2 diabetes mellitus (DM), characterized by glomerular mesangial expansion, inflammation, accumulation of extracellular matrix (ECM) protein, and hypertrophy, is the major cause of end-stage renal disease (ESRD). Increasing evidence suggested that p21-dependent glomerular and mesangial cell (MC) hypertrophy play key roles in the pathogenesis of DN. Recently, posttranscriptional modifications (PTMs) have uncovered novel molecular mechanisms involved in DN. However, precise regulatory mechanism of histone lysine methylation (HKme) mediating p21 related hypertrophy associated with DN is not clear. We evaluated the roles of HKme and histone methyltransferase (HMT) SET7/9 in p21 gene expression in glomeruli of diabetic rats and in high glucose- (HG-) treated rat mesangial cells (RMCs). p21 gene expression was upregulated in diabetic rats glomeruli; chromatin immunoprecipitation (ChIP) assays showed decreased histone H3-lysine9-dimethylation (H3K9me2) accompanied with enhanced histone H3-lysine4-methylation (H3K4me1/3) and SET7/9 occupancies at the p21 promoter. HG-treated RMCs exhibited increased p21 mRNA, H3K4me level, SET7/9 recruitment, and inverse H3K9me, which were reversed by TGF-β1 antibody. These data uncovered key roles of H3Kme and SET7/9 responsible for p21 gene expression in vivo and in vitro under diabetic conditions and confirmed preventive effect of TGF-β1 antibody on DN.

MeSH terms

  • Animals
  • Antibodies / pharmacology
  • Blotting, Western
  • Cyclin-Dependent Kinase Inhibitor p21 / drug effects
  • Cyclin-Dependent Kinase Inhibitor p21 / genetics*
  • Diabetes Mellitus, Experimental / genetics*
  • Diabetes Mellitus, Experimental / metabolism
  • Diabetes Mellitus, Type 1 / genetics*
  • Diabetes Mellitus, Type 1 / metabolism
  • Diabetic Nephropathies / genetics*
  • Diabetic Nephropathies / metabolism
  • Gene Expression Regulation
  • Glucose / pharmacology
  • Histone Code*
  • Histone-Lysine N-Methyltransferase / metabolism*
  • In Vitro Techniques
  • Kidney Glomerulus / metabolism*
  • Lysine
  • Male
  • Mesangial Cells / drug effects
  • Mesangial Cells / metabolism*
  • Methylation
  • Promoter Regions, Genetic
  • Rats
  • Rats, Wistar
  • Transforming Growth Factor beta1 / antagonists & inhibitors

Substances

  • Antibodies
  • Cdkn1a protein, rat
  • Cyclin-Dependent Kinase Inhibitor p21
  • Tgfb1 protein, rat
  • Transforming Growth Factor beta1
  • Histone-Lysine N-Methyltransferase
  • Glucose
  • Lysine