Human placental 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase: purification from mitochondria and kinetic profiles, biophysical characterization of the purified mitochondrial and microsomal enzymes

J Steroid Biochem. 1989 Aug;33(2):209-17. doi: 10.1016/0022-4731(89)90296-3.

Abstract

In human placenta, 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase, an enzyme complex found in microsomes and mitochondria, synthesizes progesterone from pregnenolone and androstenedione from fetal dehydroepiandrosterone sulfate. The dehydrogenase and isomerase activities of the mitochondrial enzyme were copurified (733-fold) using sequential cholate solubilization, ion exchange chromatography (DEAE-Toyopearl 650S), and hydroxylapatite chromatography (Bio-Gel HT). Enzyme homogeneity was demonstrated by a single protein band in SDS-polyacrylamide gel electrophoresis (monomeric Mr = 41,000), gel filtration at constant specific enzyme activity (Mr = 77,000), and a single NH2-terminal sequence. Kinetic constants were determined for the oxidation of pregnenolone (Km = 1.6 microM, Vmax = 48.6 nmol/min/mg) and dehydroepiandrosterone (Km = 2.4 microM, Vmax = 48.5 nmol/min/mg) and for the isomerization of 5-pregnene-3,20-dione (Km = 9.3 microM, Vmax = 914.2 nmol/min/mg) and 5-androstene-3,17-dione (Km = 27.6 microM, Vmax = 888.4 nmol/min/mg. Mixed substrate studies showed that the dehydrogenase and isomerase activities utilize their respective pregnene and androstene substrates competitively. Dixon analysis demonstrated that the product steroids, progesterone and androstenedione, are competitive inhibitors of the C-21 and C-19 dehydrogenase activities. Enzyme purified from mitochondria and microsomes had similar kinetic profiles with respect to substrate utilization, product inhibition, and cofactor (NAD+) reduction (mean Km +/- SD using C-19 and C-21 dehydrogenase substrates = 26.4 +/- 0.8 microM, mean Vmax = 73.2 +/- 1.3 nmol/min/mg). Pure enzyme from both organelles exhibited identical biophysical properties in terms of molecular weight and subunit composition, pH optima (pH 9.8, dehydrogenase; pH 7.5, isomerase), temperature optimum (37 degrees C), stability in storage and solution, effects of divalent cations, and the single NH2-terminal sequence of 27 amino acids. These results suggest that the mitochondrial and microsomal enzymes are the same protein localized in different organelles.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 3-Hydroxysteroid Dehydrogenases / isolation & purification*
  • 3-Hydroxysteroid Dehydrogenases / metabolism
  • Amino Acid Sequence
  • Electrophoresis, Polyacrylamide Gel
  • Humans
  • Isomerases / isolation & purification*
  • Kinetics
  • Microsomes / enzymology*
  • Mitochondria / enzymology*
  • Molecular Sequence Data
  • Molecular Weight
  • Placenta / enzymology*
  • Steroid Isomerases / isolation & purification*
  • Steroid Isomerases / metabolism

Substances

  • 3-Hydroxysteroid Dehydrogenases
  • delta(5)-3 beta-hydroxysteroid dehydrogenase
  • Isomerases
  • Steroid Isomerases
  • steroid delta-isomerase