[Prognostic stratification in the treatment of AML]

Rinsho Ketsueki. 2016;57(10):1918-1927. doi: 10.11406/rinketsu.57.1918.
[Article in Japanese]

Abstract

Current treatment of acute myeloid leukemia (AML) still relies on intensive chemotherapy and allogeneic hematopoietic stem cell transplantation (HSCT). AML is a heterogeneous neoplasm characterized by distinct chromosomal and genetic abnormalities. Recent comprehensive gene analyses have highlighted distinct genetic subgroups that are associated with different responses to chemotherapy. Therefore, the molecular landscape of AML is fundamental to the development of novel therapeutic approaches and provides opportunities for individualization of therapy. In addition, the age-related incidence of clonal hematopoiesis is high, affecting nearly 10% of healthy people more than 65 years of age. Clonal hematopoiesis is confirmed by the presence of mutations related to AML including genes involved in DNA methylation, chromatin modification and RNA splicing. In the analysis of gene mutation profiles in secondary AML (s-AML) from myelodysplastic syndromes and myeloproliferative neoplasms, secondary-type gene mutations were identified with >95% specificity in s-AML as compared with de novo AML, including RNA splicing, chromatin modification and cohesion complex genes, and were highly associated with poor responses to chemotherapy as well as TP53 mutation. It is important to identify genetic subgroups at relatively high-risk of relapses who should receive allogeneic HSCT during the first remission. In this review, prognostic stratification for individualized treatment of AML is discussed.

MeSH terms

  • DNA Methylation
  • Humans
  • Leukemia, Myeloid, Acute / diagnosis*
  • Leukemia, Myeloid, Acute / genetics
  • Leukemia, Myeloid, Acute / therapy*
  • Prognosis
  • Risk Factors
  • Stem Cell Transplantation