Direct interaction between yeast NADH-ubiquinone oxidoreductase, succinate-ubiquinone oxidoreductase, and ubiquinol-cytochrome c oxidoreductase in the reduction of exogenous quinones

J Biol Chem. 1988 Jan 5;263(1):193-9.

Abstract

The reduction of the following exogenous quinones by succinate and NADH was studied in mitochondria isolated from both wild type and ubiquinone (Q)-deficient strains of yeast: ubiquinone-0 (Q0), ubiquinone-1 (Q1), ubiquinone-2 (Q2), and its decyl analogue 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone (DB), duroquinone (DQ), menadione (MQ), vitamin K1 (2-methyl-3-phytyl-1,4-naphthoquinone), the plastoquinone analogue 2,3,6-trimethyl-1,4-benzoquinone (PQOc1), plastoquinone-2 (PQ2), and its decyl analogue (2,3-dimethyl-6-decyl-1,4-benzoquinone). Reduction of the small quinones DQ, Q0, Q1, and PQOc1 by NADH occurred in both wild type and Q-deficient mitochondria in a reaction inhibited more than 50% by myxothiazol and less than 20% by antimycin. The reduction of these small quinones by succinate also occurred in wild type mitochondria in a reaction inhibited more than 50% by antimycin but did not occur in Q-deficient mitochondria suggesting that endogenous Q6 is involved in their reduction. In addition, the inhibitory effects of antimycin and myxothiazol, specific inhibitors of the cytochrome b-c1 complex, on the reduction of these small quinones suggest the involvement of this complex in the electron transfer reaction. By contrast, the reduction of Q2 and DB by succinate was insensitive to inhibitors and by NADH was 20-30% inhibited by myxothiazol suggesting that these analogues are directly reduced by the primary dehydrogenases. The dependence of the sensitivity to the inhibitors on the substrate used suggests that succinate-ubiquinone oxidoreductase interacts specifically with center i (the antimycin-sensitive site) and NADH ubiquinone oxidoreductase preferentially with center o (the myxothiazol-sensitive site) of the cytochrome b-c1 complex. The NADH dehydrogenase involved in the myxothiazol-sensitive quinone reduction faces the matrix side of the inner membrane suggesting that center o may be localized within the membrane at a similar depth as center i.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Electron Transport Complex II
  • Electron Transport Complex III / metabolism*
  • Kinetics
  • Mitochondria / enzymology
  • Multienzyme Complexes / metabolism*
  • NAD(P)H Dehydrogenase (Quinone)
  • Oxidation-Reduction
  • Oxidoreductases / metabolism*
  • Quinone Reductases / metabolism*
  • Quinones / metabolism*
  • Saccharomyces cerevisiae / enzymology*
  • Spectrophotometry, Ultraviolet
  • Succinate Dehydrogenase / metabolism*

Substances

  • Multienzyme Complexes
  • Quinones
  • Oxidoreductases
  • Electron Transport Complex II
  • Succinate Dehydrogenase
  • NAD(P)H Dehydrogenase (Quinone)
  • Quinone Reductases
  • Electron Transport Complex III