Identification of SLIRP as a G Quadruplex-Binding Protein

J Am Chem Soc. 2017 Sep 13;139(36):12426-12429. doi: 10.1021/jacs.7b07563. Epub 2017 Sep 5.

Abstract

The guanine quadruplex (G4) structure in DNA is a secondary structure motif that plays important roles in DNA replication, transcriptional regulation, and maintenance of genomic stability. Here, we employed a quantitative mass spectrometry-based approach to profile the interaction proteomes of three well-defined G4 structures derived from the human telomere and the promoters of cMYC and cKIT genes. We identified SLIRP as a novel G4-interacting protein. We also demonstrated that the protein could bind directly with G4 DNA with Kd values in the low nanomolar range and revealed that the robust binding of the protein toward G4 DNA requires its RRM domain. We further assessed, by using CRISPR-Cas9-introduced affinity tag and ChIP-Seq analysis, the genome-wide occupancy of SLIRP, and showed that the protein binds preferentially to G-rich DNA sequences that can fold into G4 structures. Together, our results uncovered a novel cellular protein that can interact directly with G4 DNA, which underscored the complex regulatory networks involved in G4 biology.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Chromatin Immunoprecipitation
  • Clustered Regularly Interspaced Short Palindromic Repeats
  • G-Quadruplexes*
  • Genome, Human
  • Humans
  • Mass Spectrometry
  • Microscopy, Fluorescence
  • Protein Binding
  • Proteome
  • RNA-Binding Proteins / chemistry*

Substances

  • Proteome
  • RNA-Binding Proteins
  • SLIRP protein, human